High frequency QRS

Last updated
High Frequency QRS
EKG Complex en.svg
ECG of a heart in normal sinus rhythm
Test of Electrocardiogram

High frequency QRS (HFQRS) refers to the analysis of the high frequency spectral components of the QRS complex in an electrocardiogram (ECG). High frequency analysis of the QRS complex may be useful for detection of coronary artery disease during an exercise stress test. [1] It however requires special software. [1]

History

Left: Frequency band of standard ECG components is typically 0.05-100 Hz. HFQRS represents changes in the 150-250 Hz band (marked in red circle). Right: Depicts the physiological basis of HFQRS IschemiaHFQRS.png
Left: Frequency band of standard ECG components is typically 0.05-100 Hz. HFQRS represents changes in the 150-250 Hz band (marked in red circle). Right: Depicts the physiological basis of HFQRS

HFQRS has been studied since the 1960s. The first studies correlate between incidence of notching and slurring in the QRS complexes to the existence and severity of coronary heart disease. [2] In 1979, a novel signal processing technique, including spatial filtering, averaging and alignment was used to show that HFQRS from patients in coronary care unit are less stable than in healthy subjects. [3] Later, Goldberger et al. identified reduction in the RMS (Root Mean Square) levels of the QRS (within frequency band of 80–300 Hz) in patients with Myocardial Infarction comparing to normal subjects. [4]

Research efforts during the 80-90s have shown that myocardial ischemia also induces changes to the depolarization phase and confirmed the use of HFQRS-RMS as a quantitative diagnostic measure of supply myocardial ischemia [5] [6] [7] and demand myocardial (stress-induced) ischemia. [8]


Related Research Articles

Coronary artery disease Disease characterized by plaque building up in the arteries of the heart

Coronary artery disease (CAD), also called coronary heart disease (CHD), ischemic heart disease (IHD), myocardial ischemia, or simply heart disease, involves the reduction of blood flow to the heart muscle due to build-up of plaque (atherosclerosis) in the arteries of the heart. It is the most common of the cardiovascular diseases. Types include stable angina, unstable angina, myocardial infarction, and sudden cardiac death. A common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck, or jaw. Occasionally it may feel like heartburn. Usually symptoms occur with exercise or emotional stress, last less than a few minutes, and improve with rest. Shortness of breath may also occur and sometimes no symptoms are present. In many cases, the first sign is a heart attack. Other complications include heart failure or an abnormal heartbeat.

Angina Chest discomfort due to not enough blood flow to heart muscle

Angina, also known as angina pectoris, is chest pain or pressure, a symptom of coronary heart disease, usually due to insufficient blood flow to the heart muscle (myocardium).

Electrocardiography Examination of the hearts electrical activity

Electrocardiography is the process of producing an electrocardiogram, a recording of the heart's electrical activity. It is an electrogram of the heart which is a graph of voltage versus time of the electrical activity of the heart using electrodes placed on the skin. These electrodes detect the small electrical changes that are a consequence of cardiac muscle depolarization followed by repolarization during each cardiac cycle (heartbeat). Changes in the normal ECG pattern occur in numerous cardiac abnormalities, including cardiac rhythm disturbances, inadequate coronary artery blood flow, and electrolyte disturbances.

Premature ventricular contraction Human disease

A premature ventricular contraction (PVC) is a relatively common event where the heartbeat is initiated by Purkinje fibers in the ventricles rather than by the sinoatrial node. PVCs may cause no symptoms or may be perceived as a "skipped beat" or felt as palpitations in the chest. Single beat PVCs do not usually pose a danger.

Cardiac stress test Measures the hearts ability to respond to external stress in a controlled clinical environment

A cardiac stress test is a cardiological test that measures the heart's ability to respond to external stress in a controlled clinical environment. The stress response is induced by exercise or by intravenous pharmacological stimulation.

T wave Repolarization of the ventricles in a human heart

In electrocardiography, the T wave represents the repolarization of the ventricles. The interval from the beginning of the QRS complex to the apex of the T wave is referred to as the absolute refractory period. The last half of the T wave is referred to as the relative refractory period or vulnerable period. The T wave contains more information than the QT interval. The T wave can be described by its symmetry, skewness, slope of ascending and descending limbs, amplitude and subintervals like the Tpeak–Tend interval.

Right bundle branch block Medical condition

A right bundle branch block (RBBB) is a heart block in the right bundle branch of the electrical conduction system.

Acute coronary syndrome Medical condition

Acute coronary syndrome (ACS) is a syndrome due to decreased blood flow in the coronary arteries such that part of the heart muscle is unable to function properly or dies. The most common symptom is centrally located chest pain, often radiating to the left shoulder or angle of the jaw, crushing, central and associated with nausea and sweating. Many people with acute coronary syndromes present with symptoms other than chest pain, particularly women, older people, and people with diabetes mellitus.

Variant angina Medical condition

Variant angina, and less commonly Prinzmetal angina,vasospastic angina, angina inversa, coronary vessel spasm, or coronary artery vasospasm, is a syndrome typically consisting of angina in contrast to stable angina which is generally triggered by exertion or intense exercise, commonly occurs in individuals at rest or even asleep and is caused by vasospasm, a narrowing of the coronary arteries due to contraction of the heart's smooth muscle tissue in the vessel walls. In comparison, stable angina is due to the permanent occlusion of these vessels by atherosclerosis.

Left bundle branch block Medical condition

Left bundle branch block (LBBB) is a cardiac conduction abnormality seen on the electrocardiogram (ECG). In this condition, activation of the left ventricle of the heart is delayed, which causes the left ventricle to contract later than the right ventricle.

Percutaneous coronary intervention Medical techniques used to manage coronary occlusion

Percutaneous coronary intervention (PCI) is a non-surgical procedure used to treat narrowing of the coronary arteries of the heart found in coronary artery disease. The process involves combining coronary angioplasty with stenting, which is the insertion of a permanent wire-meshed tube that is either drug eluting (DES) or composed of bare metal (BMS). The stent delivery balloon from the angioplasty catheter is inflated with media to force contact between the struts of the stent and the vessel wall, thus widening the blood vessel diameter. After accessing the blood stream through the femoral or radial artery, the procedure uses coronary catheterization to visualise the blood vessels on X-ray imaging. After this, an interventional cardiologist can perform a coronary angioplasty, using a balloon catheter in which a deflated balloon is advanced into the obstructed artery and inflated to relieve the narrowing; certain devices such as stents can be deployed to keep the blood vessel open. Various other procedures can also be performed.

The intra-aortic balloon pump(IABP) is a mechanical device that increases myocardial oxygen perfusion and indirectly increases cardiac output through afterload reduction. It consists of a cylindrical polyurethane balloon that sits in the aorta, approximately 2 centimeters (0.79 in) from the left subclavian artery. The balloon inflates and deflates via counter pulsation, meaning it actively deflates in systole and inflates in diastole. Systolic deflation decreases afterload through a vacuum effect and indirectly increases forward flow from the heart. Diastolic inflation increases blood flow to the coronary arteries via retrograde flow. These actions combine to decrease myocardial oxygen demand and increase myocardial oxygen supply.

In medicine, collateralization, also vessel collateralization and blood vessel collateralization, is the growth of a blood vessel or several blood vessels that serve the same end organ or vascular bed as another blood vessel that cannot adequately supply that end organ or vascular bed sufficiently.

Coronary vasospasm refers to when a coronary artery suddenly undergoes either complete or sub-total temporary occlusion.

Coronary ischemia, myocardial ischemia, or cardiac ischemia, is a medical term for a reduced blood flow in the coronary circulation through the coronary arteries. Coronary ischemia is linked to heart disease, and heart attacks. Coronary arteries deliver oxygen-rich blood to the heart muscle. Reduced blood flow to the heart associated with coronary ischemia can result in inadequate oxygen supply to the heart muscle. When oxygen supply to the heart is unable to keep up with oxygen demand from the muscle, the result is the characteristic symptoms of coronary ischemia, the most common of which is chest pain. Chest pain due to coronary ischemia commonly radiates to the arm or neck. Certain individuals such as women, diabetics, and the elderly may present with more varied symptoms. If blood flow through the coronary arteries is stopped completely, cardiac muscle cells may die, known as a myocardial infarction, or heart attack.

Myocardial infarction Interruption of blood supply to a part of the heart

A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops to the coronary artery of the heart, causing damage to the heart muscle. The most common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck or jaw. Often it occurs in the center or left side of the chest and lasts for more than a few minutes. The discomfort may occasionally feel like heartburn. Other symptoms may include shortness of breath, nausea, feeling faint, a cold sweat or feeling tired. About 30% of people have atypical symptoms. Women more often present without chest pain and instead have neck pain, arm pain or feel tired. Among those over 75 years old, about 5% have had an MI with little or no history of symptoms. An MI may cause heart failure, an irregular heartbeat, cardiogenic shock or cardiac arrest.

Coronary steal is a phenomenon where an alteration of circulation patterns leads to a reduction in the blood flow directed to the coronary circulation. It is caused when there is narrowing of the coronary arteries and a coronary vasodilator is used – "stealing" blood away from those parts of the heart. This happens as a result of the narrowed coronary arteries being always maximally dilated to compensate for the decreased upstream blood supply. Thus, dilating the resistance vessels in the coronary circulation causes blood to be shunted away from the coronary vessels supplying the ischemic zones, creating more ischemia.

ST depression

ST depression refers to a finding on an electrocardiogram, wherein the trace in the ST segment is abnormally low below the baseline.

Management of acute coronary syndrome

Management of acute coronary syndrome is targeted against the effects of reduced blood flow to the afflicted area of the heart muscle, usually because of a blood clot in one of the coronary arteries, the vessels that supply oxygenated blood to the myocardium. This is achieved with urgent hospitalization and medical therapy, including drugs that relieve chest pain and reduce the size of the infarct, and drugs that inhibit clot formation; for a subset of patients invasive measures are also employed. Basic principles of management are the same for all types of acute coronary syndrome. However, some important aspects of treatment depend on the presence or absence of elevation of the ST segment on the electrocardiogram, which classifies cases upon presentation to either ST segment elevation myocardial infarction (STEMI) or non-ST elevation acute coronary syndrome (NST-ACS); the latter includes unstable angina and non-ST elevation myocardial infarction (NSTEMI). Treatment is generally more aggressive for STEMI patients, and reperfusion therapy is more often reserved for them. Long-term therapy is necessary for prevention of recurrent events and complications.

Kounis syndrome is defined as acute coronary syndrome caused by an allergic reaction or a strong immune reaction to a drug or other substance. It is a rare syndrome with authentic cases reported in 130 males and 45 females, as reviewed in 2017; however, the disorder is suspected of being commonly overlooked and therefore much more prevalent. Mast cell activation and release of inflammatory cytokines as well as other inflammatory agents from the reaction leads to spasm of the arteries leading to the heart muscle or a plaque breaking free and blocking one or more of those arteries.

References

  1. 1 2 Gerald, F; Philip, A; Kligfield, P; et al. (August 2013). "Exercise Standards for Testing and Training A Scientific Statement From the American Heart Association". American Heart Association (128): 873–934.
  2. Langner PH., Geselowitz DB., Mansure FT., Lauer JA. High-frequency components in the electrocardiograms of normal subjects and of patients with coronary heart disease. Am Heart J 1961;62:746–55.
  3. Uijen GJ., de Weerd JP., Vendrik AJ. Accuracy of QRS detection in relation to the analysis of high-frequency components in the electrocardiogram. Med Biol Eng Comput 1979;17(4):492–502.
  4. Goldberger AL., Bhargava V., Froelicher V., Covell J. Effect of myocardial infarction on high-frequency QRS potentials. Circulation 1981;64(1):34–42.
  5. Mor-Avi V., Shargorodsky B., Abboud S., Laniado S., Akselrod S. Effects of coronary occlusion on high-frequency content of the epicardial electrogram and body surface electrocardiogram. Circulation 1987;76(1):237–43.
  6. Abboud S., Smith JM., Shargorodsky B., Laniado S., Sadeh D., Cohen RJ. High frequency electrocardiography of three orthogonal leads in dogs during a coronary artery occlusion. Pacing Clin Electrophysiol 1989;12(4 Pt 1):574–81.
  7. Abboud S., Cohen RJ., Sadeh D. A spectral analysis of the high frequency QRS potentials during acute myocardial ischemia in dogs. International Journal of Cardiology, 26: 285-290, 1990.
  8. Beker A., Pinchas A., Erel J., Abboud S. Spectral Analysis of High Resolution QRS Complex During Exercise Induce Ischemia. Annals of Noninvasive Electrocardiology, 1(4): 386-392, 1996.