KDM4C

Last updated
KDM4C
Protein KDM4C PDB 2XDP.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases KDM4C , GASC1, JHDM3C, JMJD2C, TDRD14C, bA146B14.1, lysine demethylase 4C
External IDs OMIM: 605469 MGI: 1924054 HomoloGene: 41004 GeneCards: KDM4C
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001172095
NM_144787
NM_001356561

RefSeq (protein)

NP_001165566
NP_659036
NP_001343490

Location (UCSC) Chr 9: 6.72 – 7.18 Mb Chr 4: 74.16 – 74.32 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Lysine-specific demethylase 4C is an enzyme that in humans is encoded by the KDM4C gene. [5] [6] [7]

Function

This gene is a member of the Jumonji domain 2 (JMJD2) family and encodes a protein with one JmjC domain, one JmjN domain, two PHD-type zinc fingers, and two Tudor domains. This nuclear protein belongs to the alpha-ketoglutarate-dependent hydroxylase superfamily. It functions as a trimethylation-specific demethylase, converting specific trimethylated histone residues to the dimethylated form. Chromosomal aberrations and increased transcriptional expression of this gene are associated with esophageal squamous cell carcinoma. [7] A expressional decrease of KDM4C was found during cardiac differentation of murine embryonic stem cells. [8]

Model organisms

Model organisms have been used in the study of KDM4C function. A conditional knockout mouse line, called Kdm4ctm1a(KOMP)Wtsi [14] [15] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists. [16] [17] [18]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [12] [19] Twenty five tests were carried out on mutant mice and two significant abnormalities were observed. [12] Homozygous mutant males had decreased haematocrit and haemoglobin levels, while animals of both sex displayed an increase in sebaceous gland size. [12]

Related Research Articles

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

Demethylases are enzymes that remove methyl (CH3) groups from nucleic acids, proteins (particularly histones), and other molecules. Demethylases are important epigenetic proteins, as they are responsible for transcriptional regulation of the genome by controlling the methylation of DNA and histones, and by extension, the chromatin state at specific gene loci.

<span class="mw-page-title-main">KDM1A</span> Protein-coding gene in the species Homo sapiens

Lysine-specific histone demethylase 1A (LSD1) also known as lysine (K)-specific demethylase 1A (KDM1A) is a protein that in humans is encoded by the KDM1A gene. LSD1 is a flavin-dependent monoamine oxidase, which can demethylate mono- and di-methylated lysines, specifically histone 3, lysine 4 (H3K4). Other reported methylated lysine substrates such as histone H3K9 and TP53 have not been biochemically validated. This enzyme plays a critical role in oocyte growth, embryogenesis, hematopoiesis and tissue-specific differentiation. LSD1 was the first histone demethylase to be discovered though more than 30 have since been described.

<span class="mw-page-title-main">SETDB1</span> Enzyme-coding gene in humans

Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene. SETDB1 is also known as KMT1E or H3K9 methyltransferase ESET.

<span class="mw-page-title-main">BAZ1B</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase, or Bromodomain adjacent to zinc finger domain, 1B (BAZ1B) is an enzyme that in humans is encoded by the BAZ1B gene.

<span class="mw-page-title-main">KDM4A</span> Lysine-specific demethylase 4A is an enzyme that in humans is encoded by the Kdm4a gene

Lysine-specific demethylase 4A is an enzyme that in humans is encoded by the KDM4A gene.

<span class="mw-page-title-main">HIRA</span> Human gene and protein

Protein HIRA is a protein that in humans is encoded by the HIRA gene. This gene is mapped to 22q11.21, centromeric to COMT.

<span class="mw-page-title-main">KDM2A</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 2A (KDM2A) also known as F-box and leucine-rich repeat protein 11 (FBXL11) is an enzyme that in humans is encoded by the KDM2A gene. KDM2A is a member of the superfamily of alpha-ketoglutarate-dependent hydroxylases, which are non-haem iron-containing proteins.

<span class="mw-page-title-main">ARID4A</span> Protein-coding gene in humans

AT rich interactive domain 4A (RBP1-like), also known as ARID4A, is a protein which in humans is encoded by the ARID4A gene.

<span class="mw-page-title-main">KDM5C</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 5C is an enzyme that in humans is encoded by the KDM5C gene. KDM5C belongs to the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">SMYD3</span> Protein-coding gene in the species Homo sapiens

SET and MYND (myeloid-Nervy-DEAF-1) domain-containing protein 3 is a protein that in humans is encoded by the SMYD3 gene.

<span class="mw-page-title-main">JARID1B</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 5B also known as histone demethylase JARID1B is a demethylase enzyme that in humans is encoded by the KDM5B gene. JARID1B belongs to the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">KDM4B</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 4B is an enzyme that in humans is encoded by the KDM4B gene. KDM4B belongs to the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">KMT5B</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase KMT5B is an enzyme that in humans is encoded by the KMT5B gene. The enzyme along with WHSC1 is responsible for dimethylation of lysine 20 on histone H4 in mouse and humans.

<span class="mw-page-title-main">KDM4D</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 4D is an enzyme that in humans is encoded by the KDM4D gene. KDM4D belongs to the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">CSRP2BP</span> Protein-coding gene in the species Homo sapiens

CSRP2 binding protein is a protein that in humans is encoded by the CSRP2BP gene.

<span class="mw-page-title-main">ARHGAP25</span> Protein-coding gene in the species Homo sapiens

Rho GTPase activating protein 25 is a protein that in humans is encoded by the ARHGAP25 gene. The gene is also known as KAIA0053. ARHGAP25 belongs to a family of Rho GTPase-modulating proteins that are implicated in actin remodeling, cell polarity, and cell migration.

<span class="mw-page-title-main">SETD5</span> Protein-coding gene in the species Homo sapiens

SET domain containing 5 is a protein that in humans is encoded by the SETD5 gene. It is a member of the histone lysine methyltransferase family. Overexpression of SETD5 is associated positively with progression of breast cancer. Mutations in SETD5 are associated with a rare developmental disorder termed autosomal dominant mental retardation-23. MRD23 is mainly characterized by variable congenital defects and dysmorphic facies. Clinical features include developmental delay, intellectual disability, chewing abnormalities, hypospadias, and cryptorchidism in males in association with craniofacial dysmorphisms.

<span class="mw-page-title-main">KDM2B</span> Protein-coding gene in humans

The human KDM2B gene encodes the protein lysine (K)-specific demethylase 2B.

<span class="mw-page-title-main">KDM3A</span> Protein-coding gene in the species Homo sapiens

Lysine demethylase 3A is a protein that in humans is encoded by the KDM3A gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000107077 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028397 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Oct 1998). "Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 5 (5): 277–86. doi: 10.1093/dnares/5.5.277 . PMID   9872452.
  6. Katoh M, Katoh M (Jun 2004). "Identification and characterization of JMJD2 family genes in silico". International Journal of Oncology. 24 (6): 1623–8. doi:10.3892/ijo.25.3.759. PMID   15138608.
  7. 1 2 "Entrez Gene: JMJD2C jumonji domain containing 2C".
  8. Boeckel, Jes-Niels; Derlet, Anja; Glaser, Simone F.; Luczak, Annika; Lucas, Tina; Heumüller, Andreas W.; Krüger, Marcus; Zehendner, Christoph M.; Kaluza, David (July 2016). "JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells". Arteriosclerosis, Thrombosis, and Vascular Biology. 36 (7): 1425–1433. doi: 10.1161/ATVBAHA.116.307695 . ISSN   1524-4636. PMID   27199445.
  9. "Haematology data for Kdm4c". Wellcome Trust Sanger Institute.
  10. "Salmonella infection data for Kdm4c". Wellcome Trust Sanger Institute.
  11. "Citrobacter infection data for Kdm4c". Wellcome Trust Sanger Institute.
  12. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  13. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  14. "International Knockout Mouse Consortium".
  15. "Mouse Genome Informatics".
  16. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  17. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  18. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  19. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC   3218837 . PMID   21722353.

Further reading