This article may be too technical for most readers to understand.(June 2024) |
In mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding.
The theorem was conjectured by Andrew Vázsonyi and proved by JosephKruskal ( 1960 ); a short proof was given by CrispinNash-Williams ( 1963 ). It has since become a prominent example in reverse mathematics as a statement that cannot be proved in ATR0 (a second-order arithmetic theory with a form of arithmetical transfinite recursion).
In 2004, the result was generalized from trees to graphs as the Robertson–Seymour theorem, a result that has also proved important in reverse mathematics and leads to the even-faster-growing SSCG function, which dwarfs . A finitary application of the theorem gives the existence of the fast-growing TREE function.
The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite.
Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.
Take X to be a partially ordered set. If T1, T2 are rooted trees with vertices labeled in X, we say that T1 is inf-embeddable in T2 and write if there is an injective map F from the vertices of T1 to the vertices of T2 such that:
Kruskal's tree theorem then states:
If X is well-quasi-ordered, then the set of rooted trees with labels in X is well-quasi-ordered under the inf-embeddable order defined above. (That is to say, given any infinite sequence T1, T2, … of rooted trees labeled in X, there is some so that .)
For a countable label set X, Kruskal's tree theorem can be expressed and proven using second-order arithmetic. However, like Goodstein's theorem or the Paris–Harrington theorem, some special cases and variants of the theorem can be expressed in subsystems of second-order arithmetic much weaker than the subsystems where they can be proved. This was first observed by Harvey Friedman in the early 1980s, an early success of the then-nascent field of reverse mathematics. In the case where the trees above are taken to be unlabeled (that is, in the case where X has size one), Friedman found that the result was unprovable in ATR0, [1] thus giving the first example of a predicative result with a provably impredicative proof. [2] This case of the theorem is still provable by Π1
1-CA0, but by adding a "gap condition" [3] to the definition of the order on trees above, he found a natural variation of the theorem unprovable in this system. [4] [5] Much later, the Robertson–Seymour theorem would give another theorem unprovable by Π1
1-CA0.
Ordinal analysis confirms the strength of Kruskal's theorem, with the proof-theoretic ordinal of the theorem equaling the small Veblen ordinal (sometimes confused with the smaller Ackermann ordinal). [6]
Suppose that is the statement:
All the statements are true as a consequence of Kruskal's theorem and Kőnig's lemma. For each n, Peano arithmetic can prove that is true, but Peano arithmetic cannot prove the statement " is true for all n". [7] Moreover, the length of the shortest proof of in Peano arithmetic grows phenomenally fast as a function of n, far faster than any primitive recursive function or the Ackermann function, for example.[ citation needed ] The least m for which holds similarly grows extremely quickly with n.
Define , the weak tree function, as the largest m so that we have the following:
It is known that , , (about 844 trillion), (where is Graham's number), and (where the argument specifies the number of labels; see below) is larger than
To differentiate the two functions, "TREE" (with all caps) is the big TREE function, and "tree" (with all letters in lowercase) is the weak tree function.
By incorporating labels, Friedman defined a far faster-growing function. [8] For a positive integer n, take [a] to be the largest m so that we have the following:
The TREE sequence begins , , then suddenly, explodes to a value that is so big that many other "large" combinatorial constants, such as Friedman's , , and Graham's number, [b] are extremely small by comparison. A lower bound for , and, hence, an extremely weak lower bound for , is . [c] [9] Graham's number, for example, is much smaller than the lower bound , which is approximately , where is Graham's function.
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all men are mortal", in first-order logic one can have expressions in the form "for all x, if x is a man, then x is mortal"; where "for all x" is a quantifier, x is a variable, and "... is a man" and "... is mortal" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.
In mathematical logic, Goodstein's theorem is a statement about the natural numbers, proved by Reuben Goodstein in 1944, which states that every Goodstein sequence eventually terminates at 0. Laurence Kirby and Jeff Paris showed that it is unprovable in Peano arithmetic. This was the third example of a true statement about natural numbers that is unprovable in Peano arithmetic, after the examples provided by Gödel's incompleteness theorem and Gerhard Gentzen's 1943 direct proof of the unprovability of ε0-induction in Peano arithmetic. The Paris–Harrington theorem gave another example.
Kőnig's lemma or Kőnig's infinity lemma is a theorem in graph theory due to the Hungarian mathematician Dénes Kőnig who published it in 1927. It gives a sufficient condition for an infinite graph to have an infinitely long path. The computability aspects of this theorem have been thoroughly investigated by researchers in mathematical logic, especially in computability theory. This theorem also has important roles in constructive mathematics and proof theory.
In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane.
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones.
In graph theory, the Robertson–Seymour theorem states that the undirected graphs, partially ordered by the graph minor relationship, form a well-quasi-ordering. Equivalently, every family of graphs that is closed under minors can be defined by a finite set of forbidden minors, in the same way that Wagner's theorem characterizes the planar graphs as being the graphs that do not have the complete graph K5 or the complete bipartite graph K3,3 as minors.
In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n.
In mathematics, specifically order theory, a well-quasi-ordering or wqo on a set is a quasi-ordering of for which every infinite sequence of elements from contains an increasing pair with
In mathematics, Higman's lemma states that the set of finite sequences over a finite alphabet , as partially ordered by the subsequence relation, is well-quasi-ordered. That is, if is an infinite sequence of words over a finite alphabet , then there exist indices such that can be obtained from by deleting some symbols. More generally this remains true when is not necessarily finite, but is itself well-quasi-ordered, and the subsequence relation is generalized into an "embedding" relation that allows the replacement of symbols by earlier symbols in the well-quasi-ordering of . This is a special case of the later Kruskal's tree theorem. It is named after Graham Higman, who published it in 1952.
In computability theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.
In proof theory, ordinal analysis assigns ordinals to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory.
In the mathematical subject of group theory, the Grushko theorem or the Grushko–Neumann theorem is a theorem stating that the rank of a free product of two groups is equal to the sum of the ranks of the two free factors. The theorem was first obtained in a 1940 article of Grushko and then, independently, in a 1943 article of Neumann.
In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy is an ordinal-indexed family of rapidly increasing functions fα: N → N. A primary example is the Wainer hierarchy, or Löb–Wainer hierarchy, which is an extension to all α < ε0. Such hierarchies provide a natural way to classify computable functions according to rate-of-growth and computational complexity.
In proof theory, a branch of mathematical logic, elementary function arithmetic (EFA), also called elementary arithmetic and exponential function arithmetic, is the system of arithmetic with the usual elementary properties of 0, 1, +, ×, , together with induction for formulas with bounded quantifiers.
In mathematics, specifically group theory, a descendant tree is a hierarchical structure that visualizes parent-descendant relations between isomorphism classes of finite groups of prime power order , for a fixed prime number and varying integer exponents . Such groups are briefly called finitep-groups. The vertices of a descendant tree are isomorphism classes of finite p-groups.
In graph theory, the hypergraph removal lemma states that when a hypergraph contains few copies of a given sub-hypergraph, then all of the copies can be eliminated by removing a small number of hyperedges. It is a generalization of the graph removal lemma. The special case in which the graph is a tetrahedron is known as the tetrahedron removal lemma. It was first proved by Nagle, Rödl, Schacht and Skokan and, independently, by Gowers.
Roth's theorem on arithmetic progressions is a result in additive combinatorics concerning the existence of arithmetic progressions in subsets of the natural numbers. It was first proven by Klaus Roth in 1953. Roth's theorem is a special case of Szemerédi's theorem for the case .
In mathematics, especially mathematical logic, graph theory and number theory, the Buchholz hydra game is a type of hydra game, which is a single-player game based on the idea of chopping pieces off a mathematical tree. The hydra game can be used to generate a rapidly growing function, , which eventually dominates all recursive functions that are provably total in "", and the termination of all hydra games is not provably total in .
In mathematics, S2S is the monadic second order theory with two successors. It is one of the most expressive natural decidable theories known, with many decidable theories interpretable in S2S. Its decidability was proved by Rabin in 1969.
Citations
Bibliography