List of monochrome and RGB palettes

Last updated

This list of monochrome and RGB palettes includes generic repertoires of colors (color palettes) to produce black-and-white and RGB color pictures by a computer's display hardware, not necessarily the total number of such colors that can be simultaneously displayed in a given text or graphic mode of any machine. RGB is the most common method to produce colors for displays; so these complete RGB color repertoires have every possible combination of R-G-B triplets within any given maximum number of levels per component.

Contents

For specific hardware and different methods to produce colors other than RGB, see the List of 8-bit computer hardware palettes, the List of 16-bit computer hardware palettes and the List of video game console palettes. For various software arrangements and sorts of colors, including other possible full RGB arrangements within 8-bit color depth displays, see the List of software palettes.

Each palette is represented by a series of color patches. When the number of colors is low, a 1-pixel-size version of the palette appears below it, for easily comparing relative palette sizes. Huge palettes are given directly in one-color-per-pixel color patches.

For each unique palette, an image color test chart and sample image (truecolor original follows) rendered with that palette (without dithering) are given. The test chart shows the full 256 levels of the red, green, and blue (RGB) primary colors and cyan, magenta, and yellow complementary colors, along with a full 256-level grayscale. Gradients of RGB intermediate colors (orange, lime green, sea green, sky blue, violet, and fuchsia), and a full hue spectrum are also present. Color charts are not gamma corrected.

RGB 24bits palette sample image.jpg RGB 24bits palette color test chart.png

These elements illustrate the color depth and distribution of the colors of any given palette, and the sample image indicates how the color selection of such palettes could represent real-life images. These images are not necessarily representative of how the image would be displayed on the original graphics hardware, as the hardware may have additional limitations regarding the maximum display resolution, pixel aspect ratio and color placement. For simulated sample images for notable computers, see the List of 8-bit computer hardware palettes and List of 16-bit computer hardware palettes articles.

Monochrome palettes

These palettes only have some shades of gray, from black to white, both considered the most possible darker and lighter "grays", respectively. The general rule is that those palettes have 2n different shades of gray, where n is the number of bits needed to represent a single pixel.

Monochrome (1-bit)

Monochrome graphics displays typically have a black background with a white or light gray image, though green and amber monochrome monitors were also common. Such a palette requires only one bit per pixel.

Bilevel 1bit palette sample image.png Bilevel 1bit palette color test chart.png 1-bit grayscale.gif

Where photo-realism was desired, these early computer systems had a heavy reliance on dithering to make up for the limits of the technology.

Bilevel 1bit palette sample image - gimp dithered.png RGB 24bits palette color test chart - 1-bit dithered.png
Bilevel 1bit palette.png

In some systems, as Hercules and CGA graphic cards for the IBM PC, a bit value of 1 represents white pixels (light on) and a value of 0 the black ones (light off); others, like the Atari ST and Apple Macintosh with monochrome monitors, a bit value of 0 means a white pixel (no ink) and a value of 1 means a black pixel (dot of ink), which it approximates to the printing logic.

2-bit Grayscale

In a 2-bit color palette each pixel's value is represented by 2 bits resulting in a 4-value palette (22 = 4).

Grayscale 2bit palette sample image.png Grayscale 2bit palette color test chart.png 2-bit grayscale.gif

2-bit dithering:

Grayscale 2bit palette sample image - gimp dithered.png RGB 24bits palette color test chart - 2-bit dithered.png

It has black, white and two intermediate levels of gray as follows:

Grayscale 2bit palette.png

A monochrome 2-bit palette is used on:

4-bit Grayscale

In a 4-bit color palette each pixel's value is represented by 4 bits resulting in a 16-value palette (24 = 16):

Grayscale 4bit palette sample image.png Grayscale 4bit palette color test chart.png 4-bit grayscale.gif

4-bit grayscale dithering does a fairly good job of reducing visible banding of the level changes:

Grayscale 4bit palette sample image - gimp dithered.png RGB 24bits palette color test chart - 4-bit gray dithered.png
Grayscale 4bit palette.png

A monochrome 4-bit palette is used on:

8-bit Grayscale

Grayscale 8bits palette sample image.png Grayscale 8bits palette color test chart.png 8-bit grayscale.gif

In an 8-bit color palette each pixel's value is represented by 8 bits resulting in a 256-value palette (28 = 256). This is usually the maximum number of grays in ordinary monochrome systems; each image pixel occupies a single memory byte.

Grayscale 8bits palette.png

Most scanners can capture images in 8-bit grayscale, and image file formats like TIFF and JPEG natively support this monochrome palette size.

Alpha channels employed for video overlay also use (conceptually) this palette. The gray level indicates the opacity of the blended image pixel over the background image pixel.

Dichrome palettes

16-bit RG palette

RG 16bits palette sample image.png RG 16bits palette color test chart.png Redgreen.png
Additive RGAdditive RG color palette

16-bit RB palette

RB 16bits palette sample image.png RB 16bits palette color test chart.png Redblue.png
Additive RBAdditive RB color palette

16-bit GB palette

GB 16bits palette sample image.png GB 16bits palette color test chart.png Greenblue.png
Additive GBAdditive GB color palette

Regular RGB palettes

Here are grouped those full RGB hardware palettes that have the same number of binary levels (i.e., the same number of bits) for every red, green and blue components using the full RGB color model. Thus, the total number of colors are always the number of possible levels by component, n, raised to a power of 3: n×n×n = n3.

3-bit RGB

RGB 3bits palette sample image.png RGB 3bits palette color test chart.png 3-bit RGB Cube.gif

3-bit RGB dithering:

RGB 24bits palette sample image - 3-bit RGB.png RGB 24bits palette color test chart - 3-bit RGB dithered.png

Systems with a 3-bit RGB palette use 1 bit for each of the red, green and blue color components. That is, each component is either "on" or "off" with no intermediate states. This results in an 8-color palette ((21)3 = 23 = 8) that have black, white, the three RGB primary colors red, green and blue and their correspondent complementary colors cyan, magenta and yellow as follows:

RGB 3bits palette.png

The color indices vary between implementations; therefore, index numbers are not given.

The 3-bit RGB palette is used by:

6-bit RGB

RGB 6bits palette sample image.png RGB 6bits palette color test chart.png 6-bit RGB Cube.gif

Systems with a 6-bit RGB palette use 2 bits for each of the red, green, and blue color components. This results in a (22)3 = 43 = 64-color palette as follows:

RGB 6bits palette.png

6-bit RGB systems include the following:

9-bit RGB

RGB 9bits palette sample image.png RGB 9bits palette color test chart.png 9-bit RGB Cube.gif

Systems with a 9-bit RGB palette use 3 bits for each of the red, green, and blue color components. This results in a (23)3 = 83 = 512-color palette as follows:

RGB 9bits palette.png

9-bit RGB systems include the following:

12-bit RGB

RGB 12bits palette sample image.png RGB 12bits palette color test chart.png 12-bit RGB Cube.gif

Systems with a 12-bit RGB palette use 4 bits for each of the red, green, and blue color components. This results in a (24)3 = 163 = 4096-color palette. 12-bit color can be represented with three hexadecimal digits, also known as shorthand hexadecimal form, which is commonly used in web design. The palette is as follows:

RGB 12bits palette.png

12-bit RGB systems include the following:

The Allegro library supported in the (legacy) version 4, an emulated 12-bit color mode example code ("ex12bit.c"), using 8-bit indexed color in VGA/SVGA. It used two pixels for each emulated pixel, paired horizontally, and a specifically adapted 256-color palette. One range of the palette was many brightnesses of one primary color (say green), and another range of the other two primaries mixed together at different amounts and brightnesses (red and blue). It effectively reduced the horizontal resolution by half, but allowed a 12-bit "true color" in DOS and other 8-bit VGA/SVGA modes. The effect also somewhat reduced the total brightness of the screen. [2]

Allegro 4 - ex12bit.c.png

15-bit RGB

RGB 15bits palette sample image.png RGB 15bits palette color test chart.png 15-bit RGB Cube.gif

Systems with a 15-bit RGB palette use 5 bits for each of the red, green, and blue color components. This results in a (25)3 = 323 = 32,768-color palette (commonly known as Highcolor) as follows:

RGB 15bits palette.png

15-bit systems include:

18-bit RGB

RGB 18bits palette sample image.png RGB 18bits palette color test chart.png 18-bit RGB Cube.gif

Systems with an 18-bit RGB palette use 6 bits for each of the red, green, and blue color components. This results in a (26)3 = 643 = 262,144-color palette as follows:

RGB 18bits palette.png

18-bit RGB systems include the following:

24-bit RGB

RGB 24bits palette sample image.jpg RGB 24bits palette color test chart.png

Often known as truecolor and millions of colors, 24-bit color is the highest color depth normally used, and is available on most modern display systems and software. Its color palette contains (28)3 = 2563 = 16,777,216 colors. 24-bit color can be represented with six hexadecimal digits. This is approximately the number of individual colors the human eye can distinguish within the limited gamut of a typical display[ citation needed ].

All 16,777,216 colors (downscaled, click image for full resolution). 16777216colors.png
All 16,777,216 colors (downscaled, click image for full resolution).

The complete palette (shown above) needs a squared image of 4,096 pixels wide (50.33 MB uncompressed), and there is not enough room in this page to show it at full.

This can be imagined as 256 stacked squares like the following, every one of them having the same given value for the red component, from 0 to 255.

The color transitions in these patches must be seen as continuous. If you see color stepping (banding) inside, then probably your display is using a Highcolor (15- or 16- bits RGB, 32,768 or 65,536 colors) mode or lesser.

RGB 24bits palette R0.png
Red = 0
RGB 24bits palette R85.png
Red = 85 (1/3 of 255)
RGB 24bits palette R170.png
Red = 170 (2/3 of 255)
RGB 24bits palette R255.png
Red = 255
All 16,777,216 colors in the same pattern as the other RGB palettes above (downscaled, click image for full resolution). 16777216colors diffpatt.png
All 16,777,216 colors in the same pattern as the other RGB palettes above (downscaled, click image for full resolution).

This is also the number of colors used in true color image files, like Truevision TGA, TIFF, JPEG (the last internally encoded as YCbCr) and Windows Bitmap, captured with scanners and digital cameras, as well as those created with 3D computer graphics software.

24-bit RGB systems include:

30-bit RGB

Some newer graphics cards support 30-bit RGB and higher. Its color palette contains (210)3 = 10243 = 1,073,741,824 colors. However, there are few operating systems or applications that support this mode yet. For some people, it may be hard to distinguish between higher color palettes than 24-bit color offers. However, the range of luminance, or gray scale, offered in a 30-bit color system would have 1,024 levels of luminance rather than the 256 of the common standard 24-bit, to which the human eye is more sensitive than to hue. This reduces the banding effect for gradients across large areas. [3]

Non-regular RGB palettes

These also are full RGB palette repertories, but either they do not have the same number of levels for every red, green and blue components, or they are bit levels based. Nevertheless, all of them are used in very popular personal computers.

For further details on color palettes for these systems, see the article List of 8-bit computer hardware palettes.

4-bit RGBI

RGBI 4bits palette sample image.png RGBI 4bits palette color test chart.png

The 4-bit RGBI palette is similar to the 3-bit RGB palette but adds one bit for intensity. This allows each of the colors of the 3-bit palette to have a dark and bright variant, potentially giving a total of 23×2 = 16 colors. However, some implementations had only 15 effective colors due to the "dark" and "bright" variations of black being displayed identically.

This 4-bit RGBI schema is used in several platforms with variations, so the table given below is a simple reference for the palette richness, and not an actual implemented palette. For this reason, no numbers are assigned to each color, and color order is arbitrary.

RGBI 4bits palette.png

Note that "dark white" is a lighter gray than "bright black" in this example.

The most common use of 4-bit RGBI was on IBM PC s and compatible computers that used a 9-pin DE-9 connector for color output. These computers used a modified "dark yellow" color that appeared to be brown. On displays designed for the IBM PC, setting a color "bright" added ⅓ of the maximum to all three channels' brightness, so the "bright" colors were whiter shades of their 3-bit counterparts. Each of the other bits increased a channel by ⅔, except that dark yellow had only ⅓ green and was therefore brown instead of ochre. [4]

PC graphics standards using this RGBI mode include:

The CGA palette is also used by default by IBM's later EGA, MCGA, and VGA graphics standards for backward compatibility, although these standards allow the palette to be changed as they use analog RGB outputs rather than using digital RGBI. Most notably, the EGA standard used the same DE-9 connector as CGA (with additional signals providing a 64-color palette), and most monitors designed for EGA would treat EGA's 200-line graphics modes as using the CGA color palette to retain compatibility with CGA graphics modes and graphic cards.

The MOS Technology 8563 and 8568 Video Display Controller chips used on the Commodore 128 series for its 80-column mode (and the unreleased Commodore 900 workstation) also used the same palette used on the IBM PC, since these chips were designed to work with existing CGA PC monitors.

Other systems using a variation of the 4-bit RGBI mode include:

3-level RGB

AmstradCPC palette sample image.png AmstradCPC palette color test chart.png

The 3-level ('not'bits) RGB uses three level for every red, green and blue color components, resulting in a 33 = 27 colors palette as follows:

AmstradCPC palette.png

This palette is used by:

3-3-2 bit RGB

MSX2 Screen8 palette sample image.png MSX2 Screen8 palette color test chart.png

The 3-3-2 bit RGB use 3 bits for each of the red and green color components, and 2 bits for the blue component, due to the lesser sensitivity of the common human eye to this primary color. This results in an 8×8×4 = 256-color palette as follows:

MSX2 Screen8 palette.png

This palette is used by

16-bit RGB

RGB 16bits palette sample image.png RGB 16bits palette color test chart.png

Most modern systems support 16-bit color. It is sometimes referred to as Highcolor (along with the 15-bit RGB), medium color or thousands of colors. It utilizes a color palette of 32×64×32 = 65,536 colors. Usually, there are 5 bits allocated for the red and blue color components (32 levels each) and 6 bits for the green component (64 levels), due to the greater sensitivity of the common human eye to this color. This doubles the 15-bit RGB palette.

The 16-bit RGB palette using 6 bits for the green component:

RGB 16bits palette.png

The Atari Falcon and the Extended Graphics Array (XGA) for IBM PS/2 use the 16-bit RGB palette.

It must be noticed that not all systems using 16-bit color depth employ the 16-bit, 32-64-32 level RGB palette. Platforms like the Sharp X68000 home computer or the Neo Geo video game console employs the 15-bit RGB palette (5 bits are used for red, green, and blue), but the last bit specifies a less significant intensity or luminance. The 16-bit mode of the Truevision TARGA/AT-Vista/NU-Vista graphic cards and its associated TGA file format also uses 15-bit RGB, but it devotes its remaining bit as a simple alpha channel for video overlay. The Atari Falcon can also be switched into a matching mode by setting of an "overlay" bit in the graphics processor mode register when in 16-bit mode, meaning it can actually display in either 15- or 16-bit color depth depending on application.

Color palette comparison side-by-side

Basic color palettes

4-bit grayscale

0x00x10x20x30x40x50x60x70x80x90xA0xB0xC0xD0xE0xF

3-bit RGB

0x00x10x20x30x40x50x60x7

4-bit RGBI

0x00x10x20x30x40x50x60x7
0x80x90xA0xB0xC0xD0xE0xF

Notes

  • Color values in bold exist in 2-bit (four color) grayscale palette. Color values in very bold exist in 1-bit, monochrome palette.
  • In 4-bit RGBI, dark colors have 23rds intensity of the bright colors, not 12.

Advanced color palettes

See also

Related Research Articles

RGB color model Additive color model based on combining red, green, and blue

The RGB color model is an additive color model in which red, green, and blue light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

Video Graphics Array analog computer display standard and a display resolution

Video Graphics Array (VGA) is a graphics standard for video display controllers first introduced with the IBM PS/2 line of computers in 1987, following CGA and EGA introduced in earlier IBM personal computers. Through widespread adoption, the term has also come to mean either an analog computer display standard, the 15-pin D-subminiature VGA connector, or the 640×480 resolution characteristic of the VGA hardware.

Hercules Graphics Card

The Hercules Graphics Card (HGC) is a computer graphics controller made by Hercules Computer Technology, Inc. that combines IBM's text-only MDA display standard with a bitmapped graphics mode. This allows the HGC to offer both high-quality text and graphics from a single card. The HGC was very popular, and became a widely supported de facto display standard on IBM PC compatibles connected to a monochrome monitor. The HGC standard was used long after more technically capable systems had entered the market, especially on dual-monitor setups.

Enhanced Graphics Adapter computer display standard

The Enhanced Graphics Adapter (EGA) is an IBM PC computer display standard from 1984 that superseded and exceeded the capabilities of the CGA standard introduced with the original IBM PC, and was itself superseded by the VGA standard in 1987.

Amiga Halfbrite mode planar display mode of the Commodore Amiga computer

Extra Half-Brite (EHB) mode is a planar display mode of the Commodore Amiga computer. It uses six bitplanes. The first five bitplanes index 32 colors selected from a 12-bit color space. If the bit on the sixth bitplane is set the display hardware halves the brightness of the corresponding color component. This way 64 simultaneous colors are possible while only using 32 color registers. The number of color registers is a hardware limitation of pre-AGA chipsets used in Amiga computers. Some contemporary game titles and animations used EHB mode as a hardware-assisted means to display shadows or silhouettes. EHB was also often used as general-purpose 64 color mode with the aforementioned restrictions.

Mode 13h

Mode 13h is the standard 256-color mode on VGA graphics hardware introduced in 1987 with the IBM PS/2. It has a resolution of 320×200 pixels. It was used extensively in computer games and art/animation software of the late 1980s and early to mid-1990s. "13h" refers to the number of the mode in the VGA BIOS. The "h" stands for hexadecimal; it is actually mode 19 in decimal.

A random-access memory digital-to-analog converter (RAMDAC) is a combination of three fast digital-to-analog converters (DACs) with a small static random-access memory (SRAM) used in computer graphics display controllers to store the color palette and to generate the analog signals to drive a color monitor. The logical color number from the display memory is fed into the address inputs of the SRAM to select a palette entry to appear on the data output of the SRAM. This entry is composed of three separate values corresponding to the three components of the desired physical color. Each component value is fed to a separate DAC, whose analog output goes to the monitor, and ultimately to one of its three electron guns.

Color Graphics Adapter computer display standard

The Color Graphics Adapter (CGA), originally also called the Color/Graphics Adapter or IBM Color/Graphics Monitor Adapter, introduced in 1981, was IBM's first graphics card and first color display card for the IBM PC. For this reason, it also became that computer's first color computer display standard.

The Multi-Color Graphics Array or MCGA is a video subsystem built into the motherboard of the IBM PS/2 Model 30, introduced on April 2, 1987, and Model 25, introduced later on August 11; no standalone MCGA cards were ever made.

Hold-And-Modify display mode used in Commodore Amiga computers

Hold-And-Modify, usually abbreviated as HAM, is a display mode of the Commodore Amiga computer. It uses a highly unusual technique to express the color of pixels, allowing many more colors to appear on screen than would otherwise be possible. HAM mode was commonly used to display digitized photographs or video frames, bitmap art and occasionally animation. At the time of the Amiga's launch in 1985, this near-photorealistic display was unprecedented for a home computer and it was widely used to demonstrate the Amiga's graphical capability. However, HAM has significant technical limitations which prevent it from being used as a general purpose display mode.

Professional Graphics Controller

Professional Graphics Controller is a graphics card manufactured by IBM for PCs. It consists of three interconnected PCBs, and contains its own processor and memory. The PGC was, at the time of its release, the most advanced graphics card for the IBM XT and aimed for tasks such as CAD.

In computing, indexed color is a technique to manage digital images' colors in a limited fashion, in order to save computer memory and file storage, while speeding up display refresh and file transfers. It is a form of vector quantization compression.

VGA text mode

VGA text mode was introduced in 1987 by IBM as part of the VGA standard for its IBM PS/2 computers. Its use on IBM PC compatibles was widespread through the 1990s and persists today for some applications on modern computers. The main features of VGA text mode are colored characters and their background, blinking, various shapes of the cursor, and loadable fonts. The Linux console traditionally uses hardware VGA text modes, and the Win32 console environment has an ability to switch the screen to text mode for some text window sizes.

Tandy Graphics Adapter computer display standard

Tandy Graphics Adapter is a computer display standard for an IBM PC compatible video subsystem that improved on IBM's Color Graphics Adapter (CGA) technology. Whereas CGA could display only four colors at a time at a screen resolution of 320×200 pixels, a TGA system could display up to 16 colors. While not strictly an adapter—the TGA hardware was available only integrated onto computer motherboards, not on a separate card—TGA is so called to parallel CGA, to which TGA is related and with which it competed.

Composite artifact colors

Composite artifact colors is a designation commonly used to address several graphic modes of some 1970s and 1980s home computers. With some machines, when connected to an NTSC TV or monitor over composite video outputs, the video signal encoding allowed for extra colors to be displayed, by manipulating the pixel position on screen, not being limited by each machine's hardware color palette.

References

  1. "Commodore: A2024". Archived from the original on 2012-03-02.
  2. "ex12bit - How to fake a 12-bit truecolor mode on an 8-bit card. Allegro game programming library. - Linux Man Pages (3)". www.systutorials.com.
  3. "Gradients on TVs: Color bit depth".
  4. "KeyJ's Blog : Blog Archive » Color Generation in IBM CGA, EGA and VGA" . Retrieved 2020-05-26.
  5. paleotronic (2018-09-29). "Colour Clash: The Engineering Miracle of the Sinclair ZX Spectrum". Paleotronic Magazine. Retrieved 2020-05-26.
  6. "Sharp MZ-800 - MCbx". oldcomputer.info. Retrieved 2020-05-26.