Maxine Singer

Last updated

Maxine Frank Singer
Nci-vol-8248-300 maxine singer.jpg
Born (1931-02-15) February 15, 1931 (age 92)
NationalityAmerican
Alma mater Swarthmore College (A.B.) (1952) Yale University (Ph.D) (1957)
Known for Recombinant DNA techniques
Awards AAAS Award for Scientific Freedom and Responsibility (1982)
National Medal of Science (1992)
Vannevar Bush Award (1999)
Public Welfare Medal (2007)
ASCB Public Service Award (2008)
Scientific career
Fields Molecular Biology Biochemistry
Doctoral advisor Joseph Fruton

Maxine Frank Singer (born February 15, 1931) is an American molecular biologist and science administrator. [1] She is known for her contributions to solving the genetic code, her role in the ethical and regulatory debates on recombinant DNA techniques (including the organization of the Asilomar Conference on Recombinant DNA), and her leadership of Carnegie Institution of Washington. In 2002, Discover magazine recognized her as one of the 50 most important women in science. [2]

Contents

Life

Singer was born in New York City. [3] After attending Midwood High School in Brooklyn, [4] she majored in chemistry (and minored in biology) at Swarthmore College. [5] She went on to earn a Ph.D. in 1957 at Yale University, researching protein chemistry under Joseph Fruton. Fruton encouraged her to specialize in nucleic acids, and in 1956 she joined the Laboratory of Biochemistry of Leon Heppel at the National Institutes of Health. [6] She led various biochemical research groups as the Chief of the Laboratory of Biochemistry at the National Cancer institute between 1980 and 1987. [7]

In the wake of the 1973 report of the first use of recombinant DNA techniques to introduce genes from one species into another, Singer was among the first to call attention to the possible risks of genetic engineering. She was a chairperson of the 1973 Gordon Conference on Nucleic Acids, where the possible public health risks of the technique were discussed, [8] and she helped to organize the 1975 Asilomar Conference on Recombinant DNA that resulted in guidelines for dealing with the largely unknown risks of the technique. [1]

Singer was elected a Fellow of the American Academy of Arts and Sciences in 1978. [9] In 1988, she became president of Carnegie Institution of Washington, a position she held until 2002. [10] She was elected to the American Philosophical Society in 1990. [11] Singer received the National Medal of Science in 1992 "for her outstanding scientific accomplishments and her deep concern for the societal responsibility of the scientist" [12] and was the first woman to receive the Vannevar Bush Award, in 1999. [13] In 2007, she was awarded the Public Welfare Medal from the National Academy of Sciences. [14]

Research contributions

Singer has made important contributions to the fields of biochemistry and molecular biology. Her research with Leon Heppel on the role of enzymes that regulate synthesis of nucleic acids played a part in helping Marshall Nirenberg and Heinrick Matthaei in deciphering the genetic code. [15] They studied polynucleotide phosphorylase, an enzyme that can put together individual nucleotides into random RNA sequences. They investigated the base compositions of these polynucleotides using electrophoresis and paper chromatography, which enabled them to understand how the enzyme catalyzed their synthesis. [15] These experiments also allowed them to create a library of artificial RNA strands of defined sequences, such as a molecule made of only triplets of uracil that would code for phenylalanine. These artificial polynucleotides were used by Nirenberg to support the hypothesis that RNA plays a key role in the synthesis of proteins using information from DNA. The specific RNA sequences that Singer produced were used to match each of the twenty amino acids to a specific RNA nucleotide triplet, . [15]

Singer's research also includes the study of chromatin structure and genetic recombination of viruses. During her time as the head of the Laboratory of Biochemistry at the National Cancer Institute in the 1980s, she focused her research on LINEs, or long interspersed nucleotide elements. [15] She focused on LINE-1, a retrotransposon found in mammalian genomes that is scattered in thousands of places in the human genome, which she concluded is capable of movement and insertion into new places on the chromosomal DNA. [16] She studied the mechanism of how LINE-1 replicates and disperses copies to new locations of the genome, and found that the insertion of these elements into a new location could induce mutations in nearby genes, playing a role in genetic disease. [15]

Contributions to scientific community

Besides her scientific research, Singer has been influential in refining science policy. When she was the co-chair of the Gordon Conference in 1973, she raised concerns over the potential health effects and risks in the relatively new field of recombinant DNA technology. [7] She organized the 1975 Asilomar conference in order to bring together scientists to impose restrictions and draw guidelines on recombinant DNA research, where she recommended resumption of research under cautious safeguards until more was known about the potential biohazards of recombinant DNA technology. [17] [18]

Singer is also an advocate for women in science. She wrote an editorial in Science arguing that universities should encourage women pursuing science and engineering rather than wasting their skills due to unintentional bias against them. [19] Singer also introduced the "First Light" project, a science education program for elementary school students in Washington, D.C. aiming to improve mathematics and science education in schools. [7]

Singer has written over 100 scientific papers, and has also published several books with co-author Paul Berg intended to help the public have a better understanding of molecular genetics, including Genes and Genomes (1991), Dealing with Genes (1993), and George Beadle: An Uncommon Farmer (2003). [18] In 2018 she published Blossoms: And the Genes that Make Them, which describes the genetic and evolutionary reasons that flowers bloom. [20]

Related Research Articles

<span class="mw-page-title-main">DNA</span> Molecule that carries genetic information

Deoxyribonucleic acid is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

<span class="mw-page-title-main">Nucleic acid</span> Class of large biomolecules essential to all known life

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is deoxyribose, a version of ribose, the polymer is DNA.

<span class="mw-page-title-main">RNA</span> Family of large biological molecules

Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself or by forming a template for production of proteins. RNA and deoxyribonucleic acid (DNA) are nucleic acids. The nucleic acids constitute one of the four major macromolecules essential for all known forms of life. RNA is assembled as a chain of nucleotides. Cellular organisms use messenger RNA (mRNA) to convey genetic information that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

<span class="mw-page-title-main">Nucleic acid sequence</span> Succession of nucleotides in a nucleic acid

A nucleic acid sequence is a succession of bases within the nucleotides forming alleles within a DNA or RNA (GACU) molecule. This succession is denoted by a series of a set of five different letters that indicate the order of the nucleotides. By convention, sequences are usually presented from the 5' end to the 3' end. For DNA, with its double helix, there are two possible directions for the notated sequence; of these two, the sense strand is used. Because nucleic acids are normally linear (unbranched) polymers, specifying the sequence is equivalent to defining the covalent structure of the entire molecule. For this reason, the nucleic acid sequence is also termed the primary structure.

<span class="mw-page-title-main">Molecular genetics</span> Scientific study of genes at the molecular level

Molecular genetics is a sub-field of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens. The field of study is based on the merging of several sub-fields in biology: classical Mendelian inheritance, cellular biology, molecular biology, biochemistry, and biotechnology. Researchers search for mutations in a gene or induce mutations in a gene to link a gene sequence to a specific phenotype. Molecular genetics is a powerful methodology for linking mutations to genetic conditions that may aid the search for treatments/cures for various genetics diseases.

<span class="mw-page-title-main">Nirenberg and Matthaei experiment</span>

The Nirenberg and Matthaei experiment was a scientific experiment performed in May 1961 by Marshall W. Nirenberg and his post-doctoral fellow, J. Heinrich Matthaei, at the National Institutes of Health (NIH). The experiment deciphered the first of the 64 triplet codons in the genetic code by using nucleic acid homopolymers to translate specific amino acids.

<span class="mw-page-title-main">Nirenberg and Leder experiment</span>

The Nirenberg and Leder experiment was a scientific experiment performed in 1964 by Marshall W. Nirenberg and Philip Leder. The experiment elucidated the triplet nature of the genetic code and allowed the remaining ambiguous codons in the genetic code to be deciphered.

<span class="mw-page-title-main">Retrotransposon</span> Type of genetic component

Retrotransposons are a type of genetic component that copy and paste themselves into different genomic locations (transposon) by converting RNA back into DNA through the reverse transcription process using an RNA transposition intermediate.

<span class="mw-page-title-main">Paul Berg</span> American biochemist (1926–2023)

Paul Berg was an American biochemist and professor at Stanford University.

The history of molecular biology begins in the 1930s with the convergence of various, previously distinct biological and physical disciplines: biochemistry, genetics, microbiology, virology and physics. With the hope of understanding life at its most fundamental level, numerous physicists and chemists also took an interest in what would become molecular biology.

<span class="mw-page-title-main">Mobile genetic elements</span> DNA sequence whose position in the genome is variable

Mobile genetic elements (MGEs) sometimes called selfish genetic elements are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In humans, approximately 50% of the genome is thought to be MGEs. MGEs play a distinct role in evolution. Gene duplication events can also happen through the mechanism of MGEs. MGEs can also cause mutations in protein coding regions, which alters the protein functions. These mechanisms can also rearrange genes in the host genome generating variation. These mechanism can increase fitness by gaining new or additional functions. An example of MGEs in evolutionary context are that virulence factors and antibiotic resistance genes of MGEs can be transported to share genetic code with neighboring bacteria. However, MGEs can also decrease fitness by introducing disease-causing alleles or mutations. The set of MGEs in an organism is called a mobilome, which is composed of a large number of plasmids, transposons and viruses.

<span class="mw-page-title-main">Asilomar Conference on Recombinant DNA</span>

The Asilomar Conference on Recombinant DNA was an influential conference organized by Paul Berg, Maxine Singer, and colleagues to discuss the potential biohazards and regulation of biotechnology, held in February 1975 at a conference center at Asilomar State Beach, California. A group of about 140 professionals participated in the conference to draw up voluntary guidelines to ensure the safety of recombinant DNA technology. The conference also placed scientific research more into the public domain, and can be seen as applying a version of the precautionary principle.

<span class="mw-page-title-main">Marianne Grunberg-Manago</span> French biochemist

Marianne Grunberg-Manago was a Soviet-born French biochemist. Her work helped make possible key discoveries about the nature of the genetic code. Grunberg-Manago was the first woman to lead the International Union of Biochemistry and the 400-year-old French Academy of Sciences.

The following outline is provided as an overview of and topical guide to genetics:

<span class="mw-page-title-main">DNA and RNA codon tables</span> List of standard rules to translate DNA encoded information into proteins

A codon table can be used to translate a genetic code into a sequence of amino acids. The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. The mRNA sequence is determined by the sequence of genomic DNA. In this context, the standard genetic code is referred to as translation table 1. It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5′-to-3′ direction. Different tables with alternate codons are used depending on the source of the genetic code, such as from a cell nucleus, mitochondrion, plastid, or hydrogenosome.

Numerous key discoveries in biology have emerged from studies of RNA, including seminal work in the fields of biochemistry, genetics, microbiology, molecular biology, molecular evolution and structural biology. As of 2010, 30 scientists have been awarded Nobel Prizes for experimental work that includes studies of RNA. Specific discoveries of high biological significance are discussed in this article.

The history of genetics can be represented on a timeline of events from the earliest work in the 1850s, to the DNA era starting in the 1940s, and the genomics era beginning in the 1970s.

<span class="mw-page-title-main">Hachimoji DNA</span> Synthetic DNA

Hachimoji DNA is a synthetic nucleic acid analog that uses four synthetic nucleotides in addition to the four present in the natural nucleic acids, DNA and RNA. This leads to four allowed base pairs: two unnatural base pairs formed by the synthetic nucleobases in addition to the two normal pairs. Hachimoji bases have been demonstrated in both DNA and RNA analogs, using deoxyribose and ribose respectively as the backbone sugar.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is intended as introductory material for novices; for more specific and technical detail, see the article corresponding to each term. For related terms, see Glossary of evolutionary biology.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is split across two articles:

References

  1. 1 2 "Profiles in Science, The Maxine Singer Papers". U.S. National Library of Medicine.
  2. Svitil, Kathy (November 13, 2002). "The 50 Most Important Women in Science". Discover . Retrieved May 1, 2019.
  3. "Maxine Singer Papers, 1952–2004 (Biographical Note)".
  4. "Putting Science First". The Washington Post. February 14, 1989.
  5. "American Society for Cell Biology Member Profile: Maxine Singer" (PDF).
  6. "Maxine Singer". Science History Institute . June 29, 2016.
  7. 1 2 3 "Maxine Singer". www.aacc.org. Archived from the original on October 29, 2019. Retrieved November 7, 2017.
  8. "Letter from Maxine Singer to participants in the 1973 Gordon Conference on Nucleic Acids". The Paul Berg Papers, U.S. National Library of Medicine. Archived from the original on February 2, 2017.
  9. "Book of Members, 1780–2010: Chapter S" (PDF). American Academy of Arts and Sciences. Retrieved April 7, 2011.
  10. "Maxine Singer Named President Of Carnegie". The Scientist. February 23, 1987.
  11. "APS Member History". search.amphilsoc.org. Retrieved April 19, 2022.
  12. "Maxine F. Singer (1931-) | The National Medal of Science 50th Anniversary". www.nsf.gov.
  13. "Vannevar Bush Award Recipients". National Science Board. Archived from the original on October 5, 2019.
  14. "Maxine F. Singer to Receive Public Welfare Medal". National Academy of Sciences. January 12, 2007.
  15. 1 2 3 4 5 "The Maxine Singer Papers: Nucleic Acids, the Genetic Code, and Transposable Genetic Elements: A Life in Research". profiles.nlm.nih.gov. Retrieved November 7, 2017.
  16. Hohjoh, Hirohiko; Singer, Maxine F. (October 1, 1997). "Sequence‐specific single‐strand RNA binding protein encoded by the human LINE‐1 retrotransposon". The EMBO Journal. 16 (19): 6034–6043. doi:10.1093/emboj/16.19.6034. ISSN   0261-4189. PMC   1170233 . PMID   9312060.
  17. Singer, M.; Berg, P. (July 16, 1976). "Recombinant DNA: NIH Guidelines". Science. 193 (4249): 186–188. Bibcode:1976Sci...193..186S. doi:10.1126/science.11643320. ISSN   0036-8075. PMID   11643320.
  18. 1 2 "The Maxine Singer Papers: Biographical Information". profiles.nlm.nih.gov. Retrieved October 24, 2017.
  19. Singer, Maxine (November 10, 2006). "Beyond Bias and Barriers". Science. 314 (5801): 893. doi:10.1126/science.1135744. ISSN   0036-8075. PMID   17095660.
  20. Blossoms: And the Genes That Make Them. Oxford, New York: Oxford University Press. June 5, 2018. ISBN   978-0-19-881113-8.