Optical tomography

Last updated
Optical tomography
Diffuse Optical Tomography - fiber-optic array - journal.pone.0045714.g001.png
A fiber-optic array for breast cancer detection by way of Diffuse Optical Tomography.
MeSH D041622

Optical tomography is a form of computed tomography that creates a digital volumetric model of an object by reconstructing images made from light transmitted and scattered through an object. [1] Optical tomography is used mostly in medical imaging research. Optical tomography in industry is used as a sensor of thickness and internal structure of semiconductors. [2]

Contents

Principle

Optical tomography relies on the object under study being at least partially light-transmitting or translucent, so it works best on soft tissue, such as breast and brain tissue.

The high scatter-based attenuation involved is generally dealt with by using intense, often pulsed or intensity modulated, light sources, and highly sensitive light sensors, and the use of infrared light at frequencies where body tissues are most transmissive. Soft tissues are highly scattering but weakly absorbing in the near-infrared and red parts of the spectrum, so that this is the wavelength range usually used.

Types

Diffuse optical tomography

In near-infrared diffuse optical tomography (DOT), transmitted diffuse photons are collected and a diffusion equation is used to reconstruct an image from them. [3]

Time-of-flight diffuse optical tomography

A variant of optical tomography uses optical time-of-flight sampling as an attempt to distinguish transmitted light from scattered light. [4] This concept has been used in several academic and commercial systems for breast cancer imaging and cerebral measurement. The key to separation of absorption from scatter is the use of either time-resolved or frequency domain data which is then matched with a diffusion theory based estimate of how the light propagated through the tissue. The measurement of time of flight or frequency domain phase shift is essential to allow separation of absorption from scatter with reasonable accuracy.[ citation needed ]

Fluorescence molecular tomography

In fluorescence molecular tomography, the fluorescence signal transmitted through the tissue is normalized by the excitation signal transmitted through the tissue, and so many of the fluorescence tomography systems do not require the use of time-resolved or frequency domain data, although research is still ongoing in this area. Since the applications of fluorescent molecules in humans are fairly limited, most of the work in fluorescence tomography has been in the realm of pre-clinical cancer research. Both commercial systems and academic research have been shown to be effective in tracking tumor protein expression and production, and tracking response to therapies.[ citation needed ]

Confocal diffuse tomography

Confocal diffuse tomography uses a powerful laser to illuminate a sample through a scattering medium, followed by deconvolution with a calibrated diffusion operator to estimate a volume without the effects of diffusive scattering and subsequent application of a confocal inverse filter to recover the sample image. [5] [6]

Confocal time-of-flight diffuse optical tomography

Confocal time-of-flight diffuse optical tomography combines concepts from both time-of-flight and confocal diffuse optical tomography (DOT).

See also

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Spectroscopy</span> Study involving matter and electromagnetic radiation

Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.

<span class="mw-page-title-main">Transparency and translucency</span> Property of an object or substance to transmit light with minimal scattering

In the field of optics, transparency is the physical property of allowing light to pass through the material without appreciable scattering of light. On a macroscopic scale, the photons can be said to follow Snell's law. Translucency allows light to pass through, but does not necessarily follow Snell's law; the photons can be scattered at either of the two interfaces, or internally, where there is a change in index of refraction. In other words, a translucent material is made up of components with different indices of refraction. A transparent material is made up of components with a uniform index of refraction. Transparent materials appear clear, with the overall appearance of one color, or any combination leading up to a brilliant spectrum of every color. The opposite property of translucency is opacity. Other categories of visual appearance, related to the perception of regular or diffuse reflection and transmission of light, have been organized under the concept of cesia in an order system with three variables, including transparency, translucency and opacity among the involved aspects.

<span class="mw-page-title-main">Optical coherence tomography</span> Imaging technique

Optical coherence tomography (OCT) is an imaging technique that uses interferometry with short-coherence-length light to obtain micrometer-level depth resolution and uses transverse scanning of the light beam to form two- and three-dimensional images from light reflected from within biological tissue or other scattering media. Short-coherence-length light can be obtained using a superluminescent diode (SLD) with a broad spectral bandwidth or a broadly tunable laser with narrow linewidth. The first demonstration of OCT imaging was published by a team from MIT and Harvard Medical School in a 1991 article in the journal Science. The article introduced the term "OCT" to credit its derivation from optical coherence-domain reflectometry, in which the axial resolution is based on temporal coherence. The first demonstrations of in vivo OCT imaging quickly followed.

Medical optical imaging is the use of light as an investigational imaging technique for medical applications, pioneered by American Physical Chemist Britton Chance. Examples include optical microscopy, spectroscopy, endoscopy, scanning laser ophthalmoscopy, laser Doppler imaging, and optical coherence tomography. Because light is an electromagnetic wave, similar phenomena occur in X-rays, microwaves, and radio waves.

<span class="mw-page-title-main">Two-photon excitation microscopy</span> Fluorescence imaging technique

Two-photon excitation microscopy is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness. Unlike traditional fluorescence microscopy, where the excitation wavelength is shorter than the emission wavelength, two-photon excitation requires simultaneous excitation by two photons with longer wavelength than the emitted light. The laser is focused onto a specific location in the tissue and scanned across the sample to sequentially produce the image. Due to the non-linearity of two-photon excitation, mainly fluorophores in the micrometer-sized focus of the laser beam are excited, which results in the spatial resolution of the image. This contrasts with confocal microscopy, where the spatial resolution is produced by the interaction of excitation focus and the confined detection with a pinhole.

<span class="mw-page-title-main">Functional near-infrared spectroscopy</span> Optical technique for monitoring brain activity

Functional near-infrared spectroscopy (fNIRS) is an optical brain monitoring technique which uses near-infrared spectroscopy for the purpose of functional neuroimaging. Using fNIRS, brain activity is measured by using near-infrared light to estimate cortical hemodynamic activity which occur in response to neural activity. Alongside EEG, fNIRS is one of the most common non-invasive neuroimaging techniques which can be used in portable contexts. The signal is often compared with the BOLD signal measured by fMRI and is capable of measuring changes both in oxy- and deoxyhemoglobin concentration, but can only measure from regions near the cortical surface. fNIRS may also be referred to as Optical Topography (OT) and is sometimes referred to simply as NIRS.

Chemical imaging is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time information. Hyperspectral imaging measures contiguous spectral bands, as opposed to multispectral imaging which measures spaced spectral bands.

Terahertz tomography is a class of tomography where sectional imaging is done by terahertz radiation. Terahertz radiation is electromagnetic radiation with a frequency between 0.1 and 10 THz; it falls between radio waves and light waves on the spectrum; it encompasses portions of the millimeter waves and infrared wavelengths. Because of its high frequency and short wavelength, terahertz wave has a high signal-to-noise ratio in the time domain spectrum. Tomography using terahertz radiation can image samples that are opaque in the visible and near-infrared regions of the spectrum. Terahertz wave three-dimensional (3D) imaging technology has developed rapidly since its first successful application in 1997, and a series of new 3D imaging technologies have been proposed successively.

<span class="mw-page-title-main">Bruce J. Tromberg</span> American chemist

Bruce J. Tromberg is an American photochemist and a leading researcher in the field of biophotonics. He is the director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) within the National Institutes of Health (NIH). Before joining NIH, he was Professor of Biomedical Engineering at The Henry Samueli School of Engineering and of Surgery at the School of Medicine, University of California, Irvine. He was the principal investigator of the Laser Microbeam and Medical Program (LAMMP), and the Director of the Beckman Laser Institute and Medical Clinic at Irvine. He was a co-leader of the Onco-imaging and Biotechnology Program of the NCI Chao Family Comprehensive Cancer Center at Irvine.

<span class="mw-page-title-main">Monte Carlo method for photon transport</span>

Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs. This is equivalent to modeling photon transport analytically by the radiative transfer equation (RTE), which describes the motion of photons using a differential equation. However, closed-form solutions of the RTE are often not possible; for some geometries, the diffusion approximation can be used to simplify the RTE, although this, in turn, introduces many inaccuracies, especially near sources and boundaries. In contrast, Monte Carlo simulations can be made arbitrarily accurate by increasing the number of photons traced. For example, see the movie, where a Monte Carlo simulation of a pencil beam incident on a semi-infinite medium models both the initial ballistic photon flow and the later diffuse propagation.

Biological imaging may refer to any imaging technique used in biology. Typical examples include:

Ultrasound-modulated optical tomography (UOT), also known as Acousto-Optic Tomography (AOT), is a hybrid imaging modality that combines light and sound; it is a form of tomography involving ultrasound. It is used in imaging of biological soft tissues and has potential applications for early cancer detection. As a hybrid modality which uses both light and sound, UOT provides some of the best features of both: the use of light provides strong contrast and sensitivity ; these two features are derived from the optical component of UOT. The use of ultrasound allows for high resolution, as well as a high imaging depth. However, the difficulty of tackling the two fundamental problems with UOT have caused UOT to evolve relatively slowly; most work in the field is limited to theoretical simulations or phantom / sample studies.

<span class="mw-page-title-main">Diffuse optical imaging</span>

Diffuse optical imaging (DOI) is a method of imaging using near-infrared spectroscopy (NIRS) or fluorescence-based methods. When used to create 3D volumetric models of the imaged material DOI is referred to as diffuse optical tomography, whereas 2D imaging methods are classified as diffuse optical imaging.

The Beckman Laser Institute is an interdisciplinary research center for the development of optical technologies and their use in biology and medicine. Located on the campus of the University of California, Irvine in Irvine, California, an independent nonprofit corporation was created in 1982, under the leadership of Michael W. Berns, and the actual facility opened on June 4, 1986. It is one of a number of institutions focused on translational research, connecting research and medical applications. Researchers at the institute have developed laser techniques for the manipulation of structures within a living cell, and applied them medically in treatment of skin conditions, stroke, and cancer, among others.

<span class="mw-page-title-main">Photoacoustic microscopy</span>

Photoacoustic microscopy is an imaging method based on the photoacoustic effect and is a subset of photoacoustic tomography. Photoacoustic microscopy takes advantage of the local temperature rise that occurs as a result of light absorption in tissue. Using a nanosecond pulsed laser beam, tissues undergo thermoelastic expansion, resulting in the release of a wide-band acoustic wave that can be detected using a high-frequency ultrasound transducer. Since ultrasonic scattering in tissue is weaker than optical scattering, photoacoustic microscopy is capable of achieving high-resolution images at greater depths than conventional microscopy methods. Furthermore, photoacoustic microscopy is especially useful in the field of biomedical imaging due to its scalability. By adjusting the optical and acoustic foci, lateral resolution may be optimized for the desired imaging depth.

Multiple scattering low coherence interferometry (ms/LCI) is an imaging technique that relies on analyzing multiply scattered light in order to capture depth-resolved images from optical scattering media. With current applications primarily in medical imaging, has the advantage of a higher range since forward scattered light attenuates less with depth when compared to the specularly reflected light that is assessed in more conventional imaging methods such as optical coherence tomography. This allows ms/LCI to image through up to 90 mean free scattering paths, compared to roughly 27 scattering MFPs in OCT and 1–2 scattering MFPs in confocal microscopy.

Time-domain diffuse optics or time-resolved functional near-infrared spectroscopy is a branch of functional near-Infrared spectroscopy which deals with light propagation in diffusive media. There are three main approaches to diffuse optics namely continuous wave (CW), frequency domain (FD) and time-domain (TD). Biological tissue in the range of red to near-infrared wavelengths are transparent to light and can be used to probe deep layers of the tissue thus enabling various in vivo applications and clinical trials.

Diffuse optical mammography, or simply optical mammography, is an emerging imaging technique that enables the investigation of the breast composition through spectral analysis. It combines in a single non-invasive tool the capability to implement breast cancer risk assessment, lesion characterization, therapy monitoring and prediction of therapy outcome. It is an application of diffuse optics, which studies light propagation in strongly diffusive media, such as biological tissues, working in the red and near-infrared spectral range, between 600 and 1100 nm.

References

  1. Optical+Tomography at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. ^ Wojtek J. Walecki and Fanny Szondy, "Integrated quantum efficiency, reflectance, topography and stress metrology for solar cell manufacturing", Sunrise Optical LLC, Proc. SPIE 7064, 70640A (2008); doi : 10.1117/12.797541
  3. Hoshi, Yoko; Yamada, Yukio (2016-07-13). "Overview of diffuse optical tomography and its clinical applications". Journal of Biomedical Optics. 21 (9): 091312. Bibcode:2016JBO....21i1312H. doi: 10.1117/1.JBO.21.9.091312 . ISSN   1083-3668. PMID   27420810.
  4. Lyons, Ashley; Tonolini, Francesco; Boccolini, Alessandro; Repetti, Audrey; Henderson, Robert; Wiaux, Yves; Faccio, Daniele (August 2019). "Computational time-of-flight diffuse optical tomography". Nature Photonics. 13 (8): 575–579. arXiv: 1808.01135 . Bibcode:2019NaPho..13..575L. doi:10.1038/s41566-019-0439-x. ISSN   1749-4885. S2CID   118707188.
  5. Lindell, David B.; Wetzstein, Gordon (December 2020). "Three-dimensional imaging through scattering media based on confocal diffuse tomography". Nature Communications. 11 (1): 4517. Bibcode:2020NatCo..11.4517L. doi:10.1038/s41467-020-18346-3. ISSN   2041-1723. PMC   7481188 . PMID   32908155.
  6. "Confocal Diffuse Tomography | Nature Communications 2020 - YouTube". www.youtube.com. Retrieved 2021-02-10.

Further reading