Cone beam computed tomography

Last updated
Cone beam computed tomography
Cone Beam CT.jpg
Cone Beam CT scanner
MeSH D054894

Cone beam computed tomography (or CBCT, also referred to as C-arm CT, cone beam volume CT , flat panel CT or Digital Volume Tomography (DVT)) is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone. [1]

Contents

CBCT has become increasingly important in treatment planning and diagnosis in implant dentistry, ENT, orthopedics, and interventional radiology (IR), among other things. Perhaps because of the increased access to such technology, CBCT scanners are now finding many uses in dentistry, such as in the fields of oral surgery, endodontics and orthodontics. Integrated CBCT is also an important tool for patient positioning and verification in image-guided radiation therapy (IGRT).

During dental/orthodontic imaging, the CBCT scanner rotates around the patient's head, obtaining up to nearly 600 distinct images. For interventional radiology, the patient is positioned offset to the table so that the region of interest is centered in the field of view for the cone beam. A single 200 degree rotation over the region of interest acquires a volumetric data set. The scanning software collects the data and reconstructs it, producing what is termed a digital volume composed of three-dimensional voxels of anatomical data that can then be manipulated and visualized with specialized software. [2] [3] CBCT shares many similarities with traditional (fan beam) CT however there are important differences, particularly for reconstruction. CBCT has been described as the gold standard for imaging the oral and maxillofacial area.

History

Oral and maxillofacial radiology

Principle of CBCT. Cone Beam CT principle.png
Principle of CBCT.

In the late 1990s, Dr Yoshinori Arai in Japan and Dr Piero Mozzo in Italy independently developed Cone Beam Computed Technology for oral and maxillofacial radiology. [4] The first commercial system (the NewTom 9000) was introduced in the European market in 1996 and into the US market in 2001, by Italian company Quantitative Radiology. [2] [5]

Radiotherapy

Cone beam CT using kilovoltage X-rays (as used for diagnostic, rather than therapeutic purposes) attached to a linear accelerator treatment machine was first developed in the late 1990s and early 2000s. [7] Such systems have since become common on latest generation linacs. [8] In the late 2010s CBCT also started to become available on-board particle therapy delivery systems. [9]

Interventional radiology

While CBCT with X-ray image intensifiers was experimented with in the late 1990s, it was not until the adoption of flat-panel X-ray detectors, with improved contrast and spatial resolution, that CBCT became practical for clinical use in interventional radiology procedures. [10] [11] Many fixed, and even mobile, C-arm fluoroscopy systems are now capable of CBCT acquisitions, in addition to traditional planar fluoroscopy. [12] [13] CBCT aids image guidance during interventional radiology procedures treating various medical conditions including knee osteoarthritis, benign prostatic hyperplasia, and hepatocellular carcinoma. [14] [15] [16] [17]

Applications

Endodontics

Impacted wisdom tooth seen on CBCT. 3D CT impacted wisdom tooth.Gif
Impacted wisdom tooth seen on CBCT.

The most significant advantage of the CBCT in Endodontics is that it can show critical root canal anatomical features that conventional intraoral or panoramic images cannot. [18]

According to the American Association of Endodontics, there are numerous specific situations in which 3D images produced by CBCT enhance diagnosis and influence treatment, and its use cannot be disputed over conventional intraoral radiology based on ALARA principles. [19]

Implantology

A dental cone beam scan offers useful information when it comes to the assessment and planning of surgical implants. The American Academy of Oral and Maxillofacial Radiology (AAOMR) suggests cone-beam CT as the preferred method for presurgical assessment of dental implant sites. [20]

Orthodontics

As a 3D rendition, CBCT offers an undistorted view of the dentition that can be used to accurately visualize both erupted and non-erupted teeth, tooth root orientation and anomalous structures, that conventional 2D radiography cannot. [21]

Processing example using x-ray data from a tooth model:

Orthopedics

The CBCT scanner offers undistorted views of the extremities. One advantage of orthopedic CBCT is the ability to take weight bearing images of the lower extremities. In the realm of the foot and ankle particularly, weight bearing CBCT is gaining momentum due to its ability to combine 3 dimensional and weight bearing information which are of the utmost importance in diagnosis and surgical planning. [22] The preferred term used for CBCT in the lower limb is thus WBCT for Weight Bearing CT following the first scientific publications on the subject. [23] [24] [25] [26]

Image-guided radiation therapy

Image-guided radiation therapy is a form of external beam radiotherapy where the patient is positioned with the organs to be treated accurately matched in position to the treatment field, to reduce the dose to nearby organs which are not being treated. Many organs inside the body move by millimeters relative to the external skin surfaces, and a CBCT scanner mounted on the head of the radiotherapy unit is used immediately before treatment (and sometimes again during treatment) to ensure the patient's organs are in exactly the right position to match the treatment field, and to adjust the position of the treatment table if necessary. The images may also be used to check for other requirements of some types of treatment, such as full or empty bladder, empty rectum, etc. [8] [27] The same cone beam beam source and detector can alternatively be used to take simple X-ray positioning images if the organ shows particularly well on X-ray or if Fiducial markers have been inserted into the organ. [28]

Interventional radiology

The CBCT scanner is mounted on a C-arm fluoroscopy unit in the interventional radiology (IR) suite, which offers real time imaging with a stationary patient. This eliminates the time needed to transfer a patient from the angiography suite to a conventional computed tomography scanner and facilitates a broad spectrum of applications of CBCT during IR procedures. The clinical applications of CBCT in IR include treatment planning, device or implant positioning and assessment, intra-procedural localization, and assessment of procedure endpoints. CBCT is useful as a primary and supplemental form of imaging. It is an excellent adjunct to DSA and fluoroscopy for soft tissue and vascular visibility during complex procedures. The use of CBCT before fluoroscopy potentially reduces patient radiation exposure. [3]

Clinical applications

  • Chemoembolization for Hepatocellular Carcinoma: CBCT with contrast confirms that the proper artery is selected to deliver the therapy. The contrast enhances the parenchyma supplied by the selected artery and therefore reveals if the vasculature also supplies the tumor. Post treatment noncontrast CBCT confirms lipiodol staining of the tumor, which improves operator confidence of complete tumor coverage or further treatment. [29]
  • Prostatic artery embolization for benign prostatic hypertrophy: CBCT provides the soft tissue detail needed to visualize prostatic enhancement, identify duplicated prostatic arteries, and avoid nontarget embolization. CBCT is superior to DSA for this therapy since the enhancement patterns on DSA can be difficult to discern due to the overlapping pelvic structures and variable arterial anatomy. [30]
  • Abscess drainage: CBCT confirms needle tip location after placement under ultrasound and confirms drain placement by revealing contrast injection into the desired location.
  • Adrenal Vein sampling for an adenoma: contrast enhanced CBCT shows perfusion of the adrenal gland to confirm catheter placement for obtaining a satisfactory sample. [31]
  • Stent placement: CBCT improves the visualization of intracranial and extracranial stents compared to conventional DSA and digital radiography by providing a better depiction of the relationship of the stents to nearby structures (i.e. vascular walls and aneurysm lumen). [32]
  • Lung nodule percutaneous transthoracic needle biopsy: CBCT guides needle placement and demonstrated a diagnostic accuracy, sensitivity, and specificity of 98.2%, 96.8%, and 100%, respectively. Diagnostic accuracy was unaffected by technically challenging conditions. [33]
  • Vascular Anomalies: After correction of arteriovenous malformations with coiling, CBCT sensitively detects small infarcts in tissue that has been "sacrificed" during the procedure to prevent further shunting. The infarcted tissue appears as a small area of contrast retention.
  • Peripheral Vascular Interventions[ citation needed ]
  • Biliary Interventions[ citation needed ]
  • Spinal Interventions[ citation needed ]
  • Enterostomy Interventions[ citation needed ]

Industrial applications

Cone beam CT is used for material analysis, metrology, and nondestructive testing in the manufacturing sector. Cone beam CT is also inspect and detect defects of tiny sizes, such as internal pitting corrosion or cracks of an object in quality control. [34]

Reconstruction

Cone beam reconstruction algorithms are similar to typical tomographic reconstruction algorithms, and methods such as filtered backprojection or iterative reconstruction may be used. However, since the reconstruction is three-dimensional, modifications such as the FDK algorithm [35] may be needed.

Risks

Oral and maxillofacial radiology

Total radiation doses from 3D dental CBCT exams are 96% lower than conventional CT exams, but deliver 5-16x more radiation than standard dental 2D x-ray (OPG). The time of exposure in CBCT is also comparatively less when compared to conventional CT. [36] [37] [38] [39] [40]

CBCT use is only lightly regulated in the US. The recommended standard of care is to use the smallest possible field of view (FOV), the smallest voxel size, the lowest mA setting and the shortest exposure time in conjunction with a pulsed exposure mode of acquisition. [41] International organisations such as the World Health Organization and ICRP, as well as many local bodies and legislation, encourage the idea of justification for all medical exposures, where risks and benefits must be weighed up before a procedure goes ahead. [42]

Disadvantages

Oral and maxillofacial radiology

There are a number of drawbacks of CBCT technology over that of CT scans, such as increased susceptibility to movement artifacts (in first generation machines) and to the lack of appropriate bone density determination. [43]

Bone density and the Hounsfield scale

The Hounsfield scale is used to measure radiodensity and, in reference to CT scans, can provide an accurate absolute density for the type of tissue depicted. The radiodensity, measured in Hounsfield Units (HU, also known as CT number) is inaccurate in CBCT scans because different areas in the scan appear with different greyscale values depending on their relative positions in the organ being scanned, despite possessing identical densities, because the image value of a voxel of an organ depends on the position[ clarification needed ] in the image volume. [44] HU measured from the same anatomical area with both CBCT and medical-grade CT scanners are not identical [45] and are thus unreliable for determination of site-specific, radiographically-identified bone density for purposes such as the placement of dental implants, as there is "no good data to relate the CBCT HU values to bone quality." [46]

Although some authors have supported the use of CBCT technology to evaluate bone density by measuring HU, [47] [48] such support is provided erroneously because scanned regions of the same density in the skull can have a different grayscale value in the reconstructed CBCT dataset. [49]

X-ray attenuation of CBCT acquisition systems currently produces different HU values for similar bony and soft tissue structures in different areas of the scanned volume (e.g. dense bone has a specific image value at the level of the menton, but the same bone has a significantly different image value at the level of the cranial base). [43]

Dental CBCT systems do not employ a standardized system for scaling the grey levels that represent the reconstructed density values and, as such, they are arbitrary and do not allow for assessment of bone quality. [50] In the absence of such a standardization, it is difficult to interpret the grey levels or impossible to compare the values resulting from different machines. While there is a general acknowledgment that this deficiency exists with CBCT systems (in that they do not correctly display HU), there has been little research conducted to attempt to correct this deficiency. [51]

With time, further advancements in CBCT reconstruction algorithms will allow for improved area detectors, [52] and this, together with enhanced postprocessing, will likely solve or reduce this problem. [44] A method for establishing attenuation coefficients with which actual HU values can be derived from CBCT "HU" values was published in 2010 and further research is currently underway to perfect this method in vivo . [51]

Interventional radiology

While the practicality of CBCT fosters its increasing application in IR, technical limitations hinder its integration into the field. The two most significant factors that affect successful integration are image quality and time (for set up, image acquisition, and image reconstruction). Compared to multidetector computed tomography (MDCT), the wider collimation in CBCT leads to increased scatter radiation and degradation of image quality as demonstrated by artifacts and decreased contrast-to-noise ratio. The temporal resolution of cesium iodide detectors in CBCT slows data acquisition time to approximately 5 to 20 seconds, which increases motion artifacts. The time required for image reconstruction takes longer for CBCT (1 minute) compared to MDCT (real time) due to the computationally demanding cone beam reconstruction algorithms. [3] [29]

See also

Related Research Articles

<span class="mw-page-title-main">CT scan</span> Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.

<span class="mw-page-title-main">Radiology</span> Branch of medicine

Radiology is the medical specialty that uses medical imaging to diagnose diseases and guide their treatment, within the bodies of humans and other animals. It began with radiography, but today it includes all imaging modalities, including those that use no ionizing electromagnetic radiation, as well as others that do, such as computed tomography (CT), fluoroscopy, and nuclear medicine including positron emission tomography (PET). Interventional radiology is the performance of usually minimally invasive medical procedures with the guidance of imaging technologies such as those mentioned above.

<span class="mw-page-title-main">Dentist</span> Health care occupations caring for the mouth and teeth

A dentist, also known as a dental surgeon, is a health care professional who specializes in dentistry, the branch of medicine focused on the teeth, gums, and mouth. The dentist's supporting team aids in providing oral health services. The dental team includes dental assistants, dental hygienists, dental technicians, and sometimes dental therapists.

<span class="mw-page-title-main">Root canal</span> Hollow part of the root of a tooth

A root canal is the naturally occurring anatomic space within the root of a tooth. It consists of the pulp chamber, the main canal(s), and more intricate anatomical branches that may connect the root canals to each other or to the surface of the root.

The Hounsfield scale, named after Sir Godfrey Hounsfield, is a quantitative scale for describing radiodensity. It is frequently used in CT scans, where its value is also termed CT number.

The University of Pittsburgh School of Dental Medicine is the dental school of the University of Pittsburgh (Pitt). It is located in Pittsburgh, Pennsylvania, United States. It is one of Pitt's six schools of the health sciences and one of several dental schools in Pennsylvania. It is closely affiliated with the University of Pittsburgh Medical Center. The School of Dental Medicine accepted 3.6% of applicants for the class of 2016, a record low for the school's entire history.

Dens invaginatus (DI), also known as tooth within a tooth, is a rare dental malformation and a developmental anomaly where there is an infolding of enamel into dentin. The prevalence of this condition is 0.3 - 10%, affecting males more frequently than females. The condition presents in two forms, coronal involving tooth crown and radicular involving tooth root, with the former being more common.

<span class="mw-page-title-main">Dental radiography</span> X-ray imaging in dentistry

Dental radiographs, commonly known as X-rays, are radiographs used to diagnose hidden dental structures, malignant or benign masses, bone loss, and cavities.

<span class="mw-page-title-main">ITK-SNAP</span> Medical imaging software

ITK-SNAP is an interactive software application that allows users to navigate three-dimensional medical images, manually delineate anatomical regions of interest, and perform automatic image segmentation. The software was designed with the audience of clinical and basic science researchers in mind, and emphasis has been placed on having a user-friendly interface and maintaining a limited feature set to prevent feature creep. ITK-SNAP is most frequently used to work with magnetic resonance imaging (MRI), cone-beam computed tomography (CBCT) and computed tomography (CT) data sets.

<span class="mw-page-title-main">Oral and maxillofacial radiology</span>

Oral and maxillofacial radiology, also known as dental and maxillofacial radiology, or even more common DentoMaxilloFacial Radiology, is the specialty of dentistry concerned with performance and interpretation of diagnostic imaging used for examining the craniofacial, dental and adjacent structures.

Patient registration is used to correlate the reference position of a virtual 3D dataset gathered by computer medical imaging with the reference position of the patient. This procedure is crucial in computer assisted surgery, in order to insure the reproducitibility of the preoperative registration and the clinical situation during surgery. The use of the term "patient registration" out of this context can lead to a confusion with the procedure of registering a patient into the files of a medical institution.

Computer-assisted surgery (CAS) represents a surgical concept and set of methods, that use computer technology for surgical planning, and for guiding or performing surgical interventions. CAS is also known as computer-aided surgery, computer-assisted intervention, image-guided surgery, digital surgery and surgical navigation, but these are terms that are more or less synonymous with CAS. CAS has been a leading factor in the development of robotic surgery.

Vijay P. Parashar, BDS, MDS, DDS, is an oral and maxillofacial radiologist working as faculty at Midwestern University in Glendale, Arizona. Prior to joining Midwestern University as Associate Professor, Parashar was the Assistant Professor of Biomedical and Diagnostic Sciences at University of Detroit Mercy in Detroit, Michigan.

<span class="mw-page-title-main">Panoramic radiograph</span> Type of X-ray

A panoramic radiograph is a panoramic scanning dental X-ray of the upper and lower jaw. It shows a two-dimensional view of a half-circle from ear to ear. Panoramic radiography is a form of focal plane tomography; thus, images of multiple planes are taken to make up the composite panoramic image, where the maxilla and mandible are in the focal trough and the structures that are superficial and deep to the trough are blurred.

Cybermed Inc., located in Seoul, South Korea, has been active in the field of 3D image processing and dental software since its conception in 1998. Its U.S. counterpart, OnDemand3D Technology Inc., is currently headquartered in Irvine, California.

Digital dentistry refers to the use of dental technologies or devices that incorporates digital or computer-controlled components to carry out dental procedures rather than using mechanical or electrical tools. The use of digital dentistry can make carrying out dental procedures more efficient than using mechanical tools, both for restorative as diagnostic purposes. Used as a way to facilitate dental treatments and propose new ways to meet rising patient demands.

Tooth ankylosis refers to a fusion between a tooth and underlying bony support tissues. In some species, this is a normal process that occurs during the formation or maintenance of the dentition. By contrast, in humans tooth ankylosis is pathological, whereby a fusion between alveolar bone and the cementum of a tooth occurs.

Jeffrey Harold Siewerdsen is an American physicist and biomedical engineer who is a Professor of Imaging Physics at The University of Texas MD Anderson Cancer Center as well as Biomedical Engineering, Computer Science, Radiology, and Neurosurgery at Johns Hopkins University.He is among the original inventors of cone-beam CT-guided radiotherapy as well as weight-bearing cone-beam CT for musculoskeletal radiology and orthopedic surgery. His work also includes the early development of flat-panel detectors on mobile C-arms for intraoperative cone-beam CT in image-guided surgery. He developed early models for the signal and noise performance of flat-panel detectors and later extended such analysis to dual-energy imaging and 3D imaging performance in cone-beam CT. He founded the ISTAR Lab in the Department of Biomedical Engineering, the Carnegie Center for Surgical Innovation at Johns Hopkins Hospital, and the Surgical Data Science Program at the Institute for Data Science in Oncology at The University of Texas MD Anderson Cancer Center.

A root-analogue dental implant (RAI) – also known as a truly anatomic dental implant, or an anatomical/custom implant – is a medical device to replace one or more roots of a single tooth immediately after extraction. In contrast to common titanium screw type implants, these implants are custom-made to exactly match the extraction socket of the specific patient. Thus there is usually no need for surgery.

<span class="mw-page-title-main">Frank J. M. Verstraete</span>

Frank J. M. Verstraete is a Belgian veterinary dentist and oral surgeon, academic scholar, and author. He is a Professor Emeritus at the University of California, Davis.

References

  1. Technical Description of CBCT from University of Manchester. Citing: Scarfe WC, Farman AG, Sukovic P (February 2006). "Clinical applications of cone-beam computed tomography in dental practice". Journal of the Canadian Dental Association. 72 (1): 75–80. PMID   16480609.
  2. 1 2 Hatcher DC (October 2010). "Operational principles for cone-beam computed tomography". Journal of the American Dental Association. 141 (Suppl 3): 3S–6S. doi: 10.14219/jada.archive.2010.0359 . PMID   20884933.
  3. 1 2 3 Orth RC, Wallace MJ, Kuo MD (June 2008). "C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology". Journal of Vascular and Interventional Radiology. 19 (6): 814–20. doi:10.1016/j.jvir.2008.02.002. PMID   18503894.
  4. Venkatesh, Elluru; Elluru, Snehal Venkatesh (2017-12-02). "Cone beam computed tomography: basics and applications in dentistry". Journal of Istanbul University Faculty of Dentistry. 51 (3 Suppl 1): S102–S121. doi:10.17096/jiufd.00289. ISSN   2149-2352. PMC   5750833 . PMID   29354314.
  5. Molteni, R (2014). "Oral and Maxillofacial Radiology". In Budinger, Thomas; Brahme, Anders (eds.). Comprehensive Biomedical Physics. Amsterdam: Elsevier. p. 112. ISBN   9780444536327.
  6. "20st Anniversary of the 1st dental CBCT complete scan — NewTom". www.newtom.it.
  7. Thwaites, David I; Tuohy, John B (2006-07-07). "Back to the future: the history and development of the clinical linear accelerator" (PDF). Physics in Medicine and Biology. 51 (13): R343–R362. doi:10.1088/0031-9155/51/13/R20. PMID   16790912. S2CID   7672187.
  8. 1 2 Shepherd, Justin (2014). "Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review". Polish Journal of Radiology. 79: 181–193. doi:10.12659/PJR.890745. PMC   4085117 . PMID   25006356.
  9. Herrmann, H.; Seppenwoolde, Y.; Georg, D.; Widder, J. (December 2019). "Image guidance: past and future of radiotherapy". Der Radiologe. 59 (S1): 21–27. doi:10.1007/s00117-019-0573-y. PMC   6914710 . PMID   31346650.
  10. Orth, Robert C.; Wallace, Michael J.; Kuo, Michael D. (June 2008). "C-arm Cone-beam CT: General Principles and Technical Considerations for Use in Interventional Radiology". Journal of Vascular and Interventional Radiology. 19 (6): 814–820. doi:10.1016/j.jvir.2008.02.002. PMID   18503894.
  11. Wallace, Michael J.; Kuo, Michael D.; Glaiberman, Craig; Binkert, Christoph A.; Orth, Robert C.; Soulez, Gilles (June 2008). "Three-Dimensional C-arm Cone-beam CT: Applications in the Interventional Suite". Journal of Vascular and Interventional Radiology. 19 (6): 799–813. doi:10.1016/j.jvir.2008.02.018. PMID   18503893.
  12. Siewerdsen, Jeffrey (2019). "Cone-Beam CT Systems". In Samei, Ehsan; Pelc, Norbert (eds.). Computed Tomography: Approaches, Applications, and Operations. Cham: Springer Nature Switzerland. p. 20. ISBN   9783030269562.
  13. Floridi, Chiara; Radaelli, Alessandro; Abi-Jaoudeh, Nadine; Grass, Micheal; De Lin, Ming; Chiaradia, Melanie; Geschwind, Jean-Francois; Kobeiter, Hishman; Squillaci, Ettore; Maleux, Geert; Giovagnoni, Andrea; Brunese, Luca; Wood, Bradford; Carrafiello, Gianpaolo; Rotondo, Antonio (July 2014). "C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications". La Radiologia Medica. 119 (7): 521–532. doi:10.1007/s11547-014-0429-5. PMC   4209965 . PMID   25012472.
  14. Cusumano, Lucas R.; Callese, Tyler E.; Redwood, Karen; Genshaft, Scott; Plotnik, Adam N.; Stewart, Jessica K.; Padia, Siddharth A. (2023-08-11). "Added Value of Cone-Beam CT to Identify Arterial Supply during Genicular Artery Embolization for Knee Osteoarthritis". Journal of Vascular and Interventional Radiology. 34 (11): 1861–1867. doi:10.1016/j.jvir.2023.07.033. ISSN   1051-0443. PMID   37573000. S2CID   260856660.
  15. Angle, John F. (September 2013). "Cone-beam CT: vascular applications". Techniques in Vascular and Interventional Radiology. 16 (3): 144–149. doi:10.1053/j.tvir.2013.02.009. ISSN   1557-9808. PMID   23993076.
  16. Cadour, F.; Tradi, F.; Habert, P.; Scemama, U.; Vidal, V.; Jacquier, A.; Bartoli, J.-M.; Moulin, G.; Bessayah, A. (November 2020). "Prostatic artery embolization using three-dimensional cone-beam computed tomography". Diagnostic and Interventional Imaging. 101 (11): 721–725. doi: 10.1016/j.diii.2020.05.002 . ISSN   2211-5684. PMID   32532575.
  17. Pung, Leland; Ahmad, Moiz; Mueller, Kerstin; Rosenberg, Jarrett; Stave, Christopher; Hwang, Gloria L.; Shah, Rajesh; Kothary, Nishita (March 2017). "The Role of Cone-Beam CT in Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis". Journal of Vascular and Interventional Radiology: JVIR. 28 (3): 334–341. doi:10.1016/j.jvir.2016.11.037. ISSN   1535-7732. PMID   28109724.
  18. Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G. (2009). "Use of Cone Beam Computed Tomography in Endodontics". International Journal of Dentistry. 2009: 634567. doi: 10.1155/2009/634567 . ISSN   1687-8728. PMC   2850139 . PMID   20379362.
  19. "Cone Beam-Computed Tomography in Endodontics" (PDF). www.aae.org. Summer 2011. Retrieved October 21, 2019.
  20. New AAOMR Guidelines on CBCT Use in Implant Planning Archived 2017-02-05 at the Wayback Machine
  21. Mah JK, Huang JC, Choo H (October 2010). "Practical applications of cone-beam computed tomography in orthodontics". Journal of the American Dental Association. 141 (Suppl 3): 7S–13S. doi:10.14219/jada.archive.2010.0361. PMID   20884934. Archived from the original on 2014-07-18.
  22. Barg, Alexej; Bailey, Travis; Richter, Martinus; Netto, Cesar; Lintz, François; Burssens, Arne; Phisitkul, Phinit; Hanrahan, Christopher J.; Saltzman, Charles L. (24 November 2017). "Weightbearing Computed Tomography of the Foot and Ankle: Emerging Technology Topical Review". Foot & Ankle International. 39 (3): 376–386. doi:10.1177/1071100717740330. PMID   29171283. S2CID   3743675.
  23. Tuominen, Esa K. J.; Kankare, Jussi; Koskinen, Seppo K.; Mattila, Kimmo T. (2013-01-01). "Weight-Bearing CT Imaging of the Lower Extremity". American Journal of Roentgenology. 200 (1): 146–148. doi:10.2214/AJR.12.8481. ISSN   0361-803X. PMID   23255755.
  24. Colin, Fabrice; Horn Lang, Tamara; Zwicky, Lukas; Hintermann, Beat; Knupp, Markus (2014-07-11). "Subtalar Joint Configuration on Weightbearing CT Scan". Foot & Ankle International. 35 (10): 1057–1062. doi:10.1177/1071100714540890. ISSN   1071-1007. PMID   25015393. S2CID   24240090.
  25. Richter, Martinus; Seidl, Bernd; Zech, Stefan; Hahn, Sarah (September 2014). "PedCAT for 3D-imaging in standing position allows for more accurate bone position (angle) measurement than radiographs or CT". Foot and Ankle Surgery. 20 (3): 201–207. doi:10.1016/j.fas.2014.04.004. ISSN   1268-7731. PMID   25103709.
  26. Lintz, François; Welck, Matthew; Bernasconi, Alessio; Thornton, James; Cullen, Nicholas P.; Singh, Dishan; Goldberg, Andy (2017-02-09). "3D Biometrics for Hindfoot Alignment Using Weightbearing CT". Foot & Ankle International. 38 (6): 684–689. doi:10.1177/1071100717690806. ISSN   1071-1007. PMID   28183212. S2CID   7828393.
  27. Sterzing, Florian; Engenhart-Cabillic, Rita; Flentje, Michael; Debus, Jürgen (22 April 2011). "Image-Guided Radiotherapy". Deutsches Ärzteblatt Online. 108 (16): 274–280. doi:10.3238/arztebl.2011.0274. PMC   3097488 . PMID   21603562.
  28. O'Neill, Angela G M; Jain, Suneil; Hounsell, Alan R; O'Sullivan, Joe M (December 2016). "Fiducial marker guided prostate radiotherapy: a review". The British Journal of Radiology. 89 (1068): 20160296. doi:10.1259/bjr.20160296. PMC   5604907 . PMID   27585736.
  29. 1 2 Wallace MJ, Kuo MD, Glaiberman C, Binkert CA, Orth RC, Soulez G (June 2008). "Three-dimensional C-arm cone-beam CT: applications in the interventional suite". Journal of Vascular and Interventional Radiology. 19 (6): 799–813. doi:10.1016/j.jvir.2008.02.018. PMID   18503893.
  30. Bagla S, Rholl KS, Sterling KM, et al. (November 2013). "Utility of cone-beam CT imaging in prostatic artery embolization". Journal of Vascular and Interventional Radiology. 24 (11): 1603–7. doi:10.1016/j.jvir.2013.06.024. PMID   23978461.
  31. Georgiades CS, Hong K, Geschwind JF, et al. (September 2007). "Adjunctive use of C-arm CT may eliminate technical failure in adrenal vein sampling". Journal of Vascular and Interventional Radiology. 18 (9): 1102–5. doi:10.1016/j.jvir.2007.06.018. PMID   17804771.
  32. Benndorf G, Claus B, Strother CM, Chang L, Klucznik RP (April 2006). "Increased cell opening and prolapse of struts of a neuroform stent in curved vasculature: value of angiographic computed tomography: technical case report". Neurosurgery. 58 (4 Suppl 2): ONS–E380, discussion ONS–E380. doi:10.1227/01.NEU.0000205287.06739.E1. PMID   16575290. S2CID   13168780.
  33. Choi JW, Park CM, Goo JM, et al. (September 2012). "C-arm cone-beam CT-guided percutaneous transthoracic needle biopsy of small (≤ 20 mm) lung nodules: diagnostic accuracy and complications in 161 patients". American Journal of Roentgenology. 199 (3): W322–30. doi:10.2214/AJR.11.7576. PMID   22915422.
  34. B. N., Ha; T. K., Tuan; T. N., Toan; T. T., Duong; T. M., Anh; B. T., Hung; M. D., Thuy (2021-12-30). "Research and manufacture of cone-beam computed tomography (CBCT) system for industrial use". Nuclear Science and Technology. 11 (4): 41–50. doi:10.53747/nst.v11i4.393. ISSN   1810-5408. S2CID   255823465.
  35. Feldkamp, L. A.; Davis, L. C.; Kress, J. W. (1984-06-01). "Practical cone-beam algorithm". JOSA A. 1 (6): 612–619. Bibcode:1984JOSAA...1..612F. CiteSeerX   10.1.1.331.8312 . doi:10.1364/JOSAA.1.000612. ISSN   1520-8532.
  36. Health, Center for Devices and Radiological (28 September 2020). "Medical X-ray Imaging - Dental Cone-beam Computed Tomography". www.fda.gov.
  37. "Radiation doses and risks of CBCT - SEDENTEXCT". www.sedentexct.eu.
  38. Signorelli L, Patcas R, Peltomäki T, Schätzle M (January 2016). "Radiation dose of cone-beam computed tomography compared to conventional radiographs in orthodontics". Journal of Orofacial Orthopedics. 77 (1): 9–15. doi:10.1007/s00056-015-0002-4. PMID   26747662. S2CID   11664989.
  39. Grünheid T, Kolbeck Schieck JR, Pliska BT, Ahmad M, Larson BE (April 2012). "Dosimetry of a cone-beam computed tomography machine compared with a digital x-ray machine in orthodontic imaging". American Journal of Orthodontics and Dentofacial Orthopedics. 141 (4): 436–43. doi:10.1016/j.ajodo.2011.10.024. PMID   22464525.
  40. Yeh, Jih-Kuei; Chen, Chia-Hui (2018-08-03). "Estimated radiation risk of cancer from dental cone-beam computed tomography imaging in orthodontics patients". BMC Oral Health. 18 (1): 131. doi: 10.1186/s12903-018-0592-5 . ISSN   1472-6831. PMC   6091080 . PMID   30075771.
  41. American Association of Endodontists; American Academy of Oral and Maxillofacial Radiology (2010). "Use of Cone-Beam Computed Tomography in Endodontics" (PDF). Retrieved 26 May 2021.
  42. "Justification of medical exposures". World Health Organization. Archived from the original on July 2, 2016. Retrieved 31 January 2018.
  43. 1 2 De Vos W, Casselman J, Swennen GR (June 2009). "Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature". International Journal of Oral and Maxillofacial Surgery. 38 (6): 609–25. doi:10.1016/j.ijom.2009.02.028. PMID   19464146.
  44. 1 2 Swennen GR, Schutyser F (September 2006). "Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography". American Journal of Orthodontics and Dentofacial Orthopedics. 130 (3): 410–6. doi:10.1016/j.ajodo.2005.11.035. PMID   16979502.
  45. Armstrong RT (2006). "Acceptability of cone beam ct vs. multi-detector CT for 3D Anatomic model construction". Journal of Oral and Maxillofacial Surgery. 64 (9): 37. doi:10.1016/j.joms.2006.06.086.
  46. Miles DA, Danforth RA (2007). "A clinician's guide to understanding cone beam volumetric imaging (CBVI)" (PDF). INeedCE.
  47. Ganz SD (December 2005). "Conventional CT and cone beam CT for improved dental diagnostics and implant planning". Dental Implantology Update. 16 (12): 89–95. PMID   16422471.
  48. Lee S, Gantes B, Riggs M, Crigger M (2007). "Bone density assessments of dental implant sites: 3. Bone quality evaluation during osteotomy and implant placement". The International Journal of Oral & Maxillofacial Implants. 22 (2): 208–12. PMID   17465345.
  49. Katsumata A, Hirukawa A, Noujeim M, et al. (May 2006). "Image artifact in dental cone-beam CT". Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics. 101 (5): 652–7. doi:10.1016/j.tripleo.2005.07.027. PMID   16632279.
  50. Norton MR, Gamble C (February 2001). "Bone classification: an objective scale of bone density using the computerized tomography scan". Clinical Oral Implants Research. 12 (1): 79–84. doi:10.1034/j.1600-0501.2001.012001079.x. PMID   11168274.
  51. 1 2 Mah P, Reeves TE, McDavid WD (September 2010). "Deriving Hounsfield units using grey levels in cone beam computed tomography". Dentomaxillofacial Radiology. 39 (6): 323–35. doi:10.1259/dmfr/19603304. PMC   3520236 . PMID   20729181. See also this linear method adapted to different machines (in PMID   29076750 & citations); and a comparatively unusual neural network approach (in PMID   34301984 & citations).
  52. Vannier MW (2003). "Craniofacial computed tomography scanning: technology, applications and future trends". Orthodontics & Craniofacial Research. 6 (Suppl 1): 23–30, discussion 179–82. doi:10.1034/j.1600-0544.2003.232.x. PMID   14606531.