Flat-panel detector

Last updated
A portable aSi flat-panel detector is used to visualise the movement of liquids in sand cores under high pressure. DeReO Flat panel detector.jpg
A portable aSi flat-panel detector is used to visualise the movement of liquids in sand cores under high pressure.

Flat-panel detectors are a class of solid-state x-ray digital radiography devices similar in principle to the image sensors used in digital photography and video. They are used in both projectional radiography and as an alternative to x-ray image intensifiers (IIs) in fluoroscopy equipment.

Contents

Principles

Light spreading in the scintillator material leads to loss of resolution in indirect detectors which direct detectors do not experience Resolution in direct and indirect x-ray detectors.svg
Light spreading in the scintillator material leads to loss of resolution in indirect detectors which direct detectors do not experience

X-rays pass through the subject being imaged and strike one of two types of detectors.

Indirect detectors

Indirect detectors contain a layer of scintillator material, typically either gadolinium oxysulfide or cesium iodide, which converts the x-rays into light. Directly behind the scintillator layer is an amorphous silicon detector array manufactured using a process very similar to that used to make LCD televisions and computer monitors. Like a TFT-LCD display, millions of roughly 0.2 mm pixels each containing a thin-film transistor form a grid patterned in amorphous silicon on the glass substrate. [1] Unlike an LCD, but similar to a digital camera's image sensor chip, each pixel also contains a photodiode which generates an electrical signal in proportion to the light produced by the portion of scintillator layer in front of the pixel. The signals from the photodiodes are amplified and encoded by additional electronics positioned at the edges or behind the sensor array in order to produce an accurate and sensitive digital representation of the x-ray image. [2]

Direct FPDs

Direct conversion imagers utilize photoconductors, such as amorphous selenium (a-Se), to capture and convert incident x-ray photons directly into electric charge. [3] X-ray photons incident upon a layer of a-Se generate electron-hole pairs via the internal photoelectric effect. A bias voltage applied to the depth of the selenium layer draw the electrons and holes to corresponding electrodes; the generated current is thus proportional to the intensity of the irradiation. Signal is then read out using underlying readout electronics, typically by a thin-film transistor (TFT) array. [4] [5]

By eliminating the optical conversion step inherent to indirect conversion detectors, lateral spread of optical photons is eliminated, thus reducing blur in the resulting signal profile in direct conversion detectors. Coupled with the small pixel sizes achievable with TFT technology, a-Se direct conversion detectors can thus provide high spatial resolution. This high spatial resolution, coupled with a-Se's relative high quantum detection efficiency for low energy photons (< 30 keV), motivate the use of this detector configuration for mammography, in which high resolution is desirable to identify microcalcifications. [6]

Advantages and disadvantages

Flat-panel detector used in digital radiography Flat panel detector.jpg
Flat-panel detector used in digital radiography

Flat-panel detectors are more sensitive and faster than film. Their sensitivity allows a lower dose of radiation for a given picture quality than film. For fluoroscopy, they are lighter, far more durable, smaller in volume, more accurate, and have much less image distortion than x-ray image intensifiers and can also be produced with larger areas. [7] Disadvantages compared to IIs can include defective image elements, higher costs and lower spatial resolution. [8]

In general radiography, there are time and cost savings to be made over computed radiography and (especially) film systems. [9] [10] In the United States, digital radiography is on course to surpass use of computed radiography and film. [11] [12]

In mammography, direct conversion FPDs have been shown to outperform film and indirect technologies in terms of resolution[ citation needed ], signal-to-noise ratio, and quantum efficiency. [13] Digital mammography is commonly recommended as the minimum standard for breast screening programmes. [14] [15]

See also

Related Research Articles

<span class="mw-page-title-main">Radiography</span> Imaging technique using ionizing and non-ionizing radiation

Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical and industrial radiography. Similar techniques are used in airport security,. To create an image in conventional radiography, a beam of X-rays is produced by an X-ray generator and it is projected towards the object. A certain amount of the X-rays or other radiation are absorbed by the object, dependent on the object's density and structural composition. The X-rays that pass through the object are captured behind the object by a detector. The generation of flat two-dimensional images by this technique is called projectional radiography. In computed tomography, an X-ray source and its associated detectors rotate around the subject, which itself moves through the conical X-ray beam produced. Any given point within the subject is crossed from many directions by many different beams at different times. Information regarding the attenuation of these beams is collated and subjected to computation to generate two-dimensional images on three planes which can be further processed to produce a three-dimensional image.

<span class="mw-page-title-main">Radiology</span> Branch of Medicine

Radiology is the medical discipline that uses medical imaging to diagnose diseases and guide their treatment, within the bodies of humans and other animals. It began with radiography, but today it includes all imaging modalities, including those that use no electromagnetic radiation, as well as others that do, such as computed tomography (CT), fluoroscopy, and nuclear medicine including positron emission tomography (PET). Interventional radiology is the performance of usually minimally invasive medical procedures with the guidance of imaging technologies such as those mentioned above.

<span class="mw-page-title-main">Mammography</span> Process of using low-energy X-rays to examine the human breast for diagnosis and screening

Mammography is the process of using low-energy X-rays to examine the human breast for diagnosis and screening. The goal of mammography is the early detection of breast cancer, typically through detection of characteristic masses or microcalcifications.

<span class="mw-page-title-main">X-ray machine</span> Machine that generates X-rays

An X-ray machine is a device that uses X-rays for a variety of applications including medicine, X-ray fluorescence, electronic assembly inspection, and measurement of material thickness in manufacturing operations. In medical applications, X-ray machines are used by radiographers to acquire x-ray images of the internal structures of living organisms, and also in sterilization.

<span class="mw-page-title-main">Fluoroscopy</span> Production of an image when X-rays strike a fluorescent screen

Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a surgeon to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery.

<span class="mw-page-title-main">Caesium iodide</span> Chemical compound

Caesium iodide or cesium iodide is the ionic compound of caesium and iodine. It is often used as the input phosphor of an X-ray image intensifier tube found in fluoroscopy equipment. Caesium iodide photocathodes are highly efficient at extreme ultraviolet wavelengths.

An X-ray image intensifier (XRII) is an image intensifier that converts X-rays into visible light at higher intensity than the more traditional fluorescent screens can. Such intensifiers are used in X-ray imaging systems to allow low-intensity X-rays to be converted to a conveniently bright visible light output. The device contains a low absorbency/scatter input window, typically aluminum, input fluorescent screen, photocathode, electron optics, output fluorescent screen and output window. These parts are all mounted in a high vacuum environment within glass or, more recently, metal/ceramic. By its intensifying effect, It allows the viewer to more easily see the structure of the object being imaged than fluorescent screens alone, whose images are dim. The XRII requires lower absorbed doses due to more efficient conversion of X-ray quanta to visible light. This device was originally introduced in 1948.

Digital radiography is a form of radiography that uses x-ray–sensitive plates to directly capture data during the patient examination, immediately transferring it to a computer system without the use of an intermediate cassette. Advantages include time efficiency through bypassing chemical processing and the ability to digitally transfer and enhance images. Also, less radiation can be used to produce an image of similar contrast to conventional radiography.

<span class="mw-page-title-main">Projectional radiography</span> Formation of 2D images using X-rays

Projectional radiography, also known as conventional radiography, is a form of radiography and medical imaging that produces two-dimensional images by X-ray radiation. The image acquisition is generally performed by radiographers, and the images are often examined by radiologists. Both the procedure and any resultant images are often simply called 'X-ray'. Plain radiography or roentgenography generally refers to projectional radiography. Plain radiography can also refer to radiography without a radiocontrast agent or radiography that generates single static images, as contrasted to fluoroscopy, which are technically also projectional.

<span class="mw-page-title-main">Tomosynthesis</span>

Tomosynthesis, also digital tomosynthesis (DTS), is a method for performing high-resolution limited-angle tomography at radiation dose levels comparable with projectional radiography. It has been studied for a variety of clinical applications, including vascular imaging, dental imaging, orthopedic imaging, mammographic imaging, musculoskeletal imaging, and chest imaging.

Photostimulated luminescence (PSL) is the release of stored energy within a phosphor by stimulation with visible light, to produce a luminescent signal. X-rays may induce such an energy storage. A plate based on this mechanism is called a photostimulable phosphor (PSP) plate and is one type of X-ray detector used in projectional radiography. Creating an image requires illuminating the plate twice: the first exposure, to the radiation of interest, "writes" the image, and a later, second illumination "reads" the image. The device to read such a plate is known as a phosphorimager.

<span class="mw-page-title-main">Automatic exposure control</span>

Automatic Exposure Control (AEC) is an X-ray exposure termination device. A medical radiographic exposure is always initiated by a human operator but an AEC detector system may be used to terminate the exposure when a predetermined amount of radiation has been received. The intention of AEC is to provide consistent x-ray image exposure, whether to film, a digital detector or a CT scanner. AEC systems may also automatically set exposure factors such as the X-ray tube current and voltage in a CT.

<span class="mw-page-title-main">Neutron imaging</span>

Neutron imaging is the process of making an image with neutrons. The resulting image is based on the neutron attenuation properties of the imaged object. The resulting images have much in common with industrial X-ray images, but since the image is based on neutron attenuating properties instead of X-ray attenuation properties, some things easily visible with neutron imaging may be very challenging or impossible to see with X-ray imaging techniques.

<span class="mw-page-title-main">X-ray detector</span> Instrument that can measure properties of X-rays

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

<span class="mw-page-title-main">Photon counting</span> Counting photons using a single-photon detector

Photon counting is a technique in which individual photons are counted using a single-photon detector (SPD). A single-photon detector emits a pulse of signal for each detected photon. The counting efficiency is determined by the quantum efficiency and the system's electronic losses.

<span class="mw-page-title-main">Amorphous silicon</span> Non-crystalline silicon

Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs.

Jeffrey Harold Siewerdsen is an American physicist and biomedical engineer who is a Professor of Imaging Physics at The University of Texas MD Anderson Cancer Center as well as Biomedical Engineering, Computer Science, Radiology, and Neurosurgery at Johns Hopkins University.He is among the original inventors of cone-beam CT-guided radiotherapy as well as weight-bearing cone-beam CT for musculoskeletal radiology and orthopedic surgery. His work also includes the early development of flat-panel detectors on mobile C-arms for intraoperative cone-beam CT in image-guided surgery. He developed early models for the signal and noise performance of flat-panel detectors and later extended such analysis to dual-energy imaging and 3D imaging performance in cone-beam CT. He founded the ISTAR Lab in the Department of Biomedical Engineering, the Carnegie Center for Surgical Innovation at Johns Hopkins Hospital, and the Surgical Data Science Program at the Institute for Data Science in Oncology at The University of Texas MD Anderson Cancer Center.

Photon-counting computed tomography (PCCT) is a form of X-ray computed tomography (CT) in which X-rays are detected using a photon-counting detector (PCD) which registers the interactions of individual photons. By keeping track of the deposited energy in each interaction, the detector pixels of a PCD each record an approximate energy spectrum, making it a spectral or energy-resolved CT technique. In contrast, more conventional CT scanners use energy-integrating detectors (EIDs), where the total energy deposited in a pixel during a fixed period of time is registered. These EIDs thus register only photon intensity, comparable to black-and-white photography, whereas PCDs register also spectral information, similar to color photography.

Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Dual-energy imaging, i.e. imaging at two energy levels, is a special case of spectral imaging and is still the most widely used terminology, but the terms "spectral imaging" and "spectral CT" have been coined to acknowledge the fact that photon-counting detectors have the potential for measurements at a larger number of energy levels.

Photon-counting mammography was introduced commercially in 2003 and was the first widely available application of photon-counting detector technology in medical x-ray imaging. Photon-counting mammography improves dose efficiency compared to conventional technologies, and enables spectral imaging.

References

  1. Kump, K; Grantors, P; Pla, F; Gobert, P (December 1998). "Digital X-ray detector technology". RBM-News. 20 (9): 221–226. doi:10.1016/S0222-0776(99)80006-6.
  2. Kotter, E.; Langer, M. (19 March 2002). "Digital radiography with large-area flat-panel detectors". European Radiology. 12 (10): 2562–2570. doi:10.1007/s00330-002-1350-1. PMID   12271399. S2CID   16677678.
  3. Direct vs. Indirect Conversion Archived January 2, 2010, at the Wayback Machine
  4. Zhao, W.; Rowlands, J.A. (1995). "Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency". Medical Physics. 24 (12): 1819–33. doi:10.1118/1.598097. PMID   9434965.
  5. Zhao, Wei; Hunt, D.C.; Tanioka, Kenkichi; Rowlands, J.A. (September 2005). "Amorphous selenium flat panel detectors for medical applications". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 549 (1–3): 205–209. Bibcode:2005NIMPA.549..205Z. doi:10.1016/j.nima.2005.04.053.
  6. M.J. Yaffe, “Detectors for Digital Mammography,” in Digital Mammography, edited by U. Bick and F. Diekmann (2010).
  7. Seibert, J. Anthony (22 July 2006). "Flat-panel detectors: how much better are they?". Pediatric Radiology. 36 (S2): 173–181. doi:10.1007/s00247-006-0208-0. PMC   2663651 . PMID   16862412.
  8. Nickoloff, Edward Lee (March 2011). "AAPM/RSNA Physics Tutorial for Residents: Physics of Flat-Panel Fluoroscopy Systems". RadioGraphics. 31 (2): 591–602. doi: 10.1148/rg.312105185 . PMID   21415199.
  9. Andriole, Katherine P. (1 September 2002). "Productivity and Cost Assessment of Computed Radiography, Digital Radiography, and Screen-Film for Outpatient Chest Examinations". Journal of Digital Imaging. 15 (3): 161–169. doi:10.1007/s10278-002-0026-3. PMC   3613258 . PMID   12532253.
  10. "CR versus DR -- what are the options?". AuntMinnie.com. 31 July 2003. Retrieved 23 July 2017.
  11. "Medicare to cut analog x-ray payments starting in 2017". AuntMinnie.com. 7 February 2016. Retrieved 23 July 2017.
  12. "Digital Radiology: Global Transition of the X-ray Image Capture Process". Imaging Technology News. 8 February 2013. Retrieved 23 July 2017.
  13. Markey, Mia K. (2012). Physics of Mammographic Imaging. Taylor & Francis. p. 9. ISBN   9781439875469.
  14. NHS Breast Screening Programme (2016). Clinical guidelines for breast cancer screening assessment (4 ed.). Public Health England.
  15. Lee, Carol H.; Dershaw, D. David; Kopans, Daniel; Evans, Phil; Monsees, Barbara; Monticciolo, Debra; Brenner, R. James; Bassett, Lawrence; Berg, Wendie; Feig, Stephen; Hendrick, Edward; Mendelson, Ellen; D'Orsi, Carl; Sickles, Edward; Burhenne, Linda Warren (January 2010). "Breast Cancer Screening With Imaging: Recommendations From the Society of Breast Imaging and the ACR on the Use of Mammography, Breast MRI, Breast Ultrasound, and Other Technologies for the Detection of Clinically Occult Breast Cancer". Journal of the American College of Radiology. 7 (1): 18–27. doi:10.1016/j.jacr.2009.09.022. PMID   20129267. S2CID   31652981.