Orders of magnitude (acceleration)

Last updated

This page lists examples of the acceleration occurring in various situations. They are grouped by orders of magnitude.

Factor
[ m/s2 ]
MultipleReference frameValue[ g ]Item
10−∞0 m/s2 inertial 0 m/s20 g The gyro rotors in Gravity Probe B and the free-floating
proof masses in the TRIAD I navigation satellite [1]
inertial 0 m/s2 0 g Weightless parabola in a reduced-gravity aircraft
10−1410 fm/s2 lab 5×10−14 m/s25×10−15 g Smallest acceleration in a scientific experiment [2]
10−10100 pm/s2inertial≈ 1×10−10 m/s2≈ 1×10−11 g Typical gravitational acceleration of stars in the Milky Way [3]
inertial1.2×10−10 m/s21.22×10−11 g Constant in Modified Newtonian dynamics theory, which states that objects with gravitational acceleration lower than don't follow Newton's law of gravity [4]
10−31 mm/s2Solar system5.93×10−3 m/s26.04×10−4 g Acceleration of Earth toward the sun due to sun's gravitational attraction
10−11 dm/s2lab0.25 m/s20.026 g Train acceleration for SJ X2 [ citation needed ]
1001 m/s2inertial1.62 m/s20.1654 g Standing on the Moon at its equator [ citation needed ]
lab4.3 m/s20.44 g Car acceleration 0–100 km/h in 6.4 s with a Saab 9-5 Hirsch [ citation needed ]
inertial9.80665 m/s21 g Standard gravity, the gravity acceleration on Earth at sea level standard [5]
1011 dam/s2inertial11.2 m/s21.14 g Saturn V Moon rocket just after launch[ citation needed ]
inertial15.2 m/s21.55 g Bugatti Veyron from 0 to 100 km/h in 2.4 s (the net acceleration vector including gravitational acceleration is directed 40 degrees from horizontal[ citation needed ])
inertial29 m/s23 g Space Shuttle, maximum during launch and reentry [ citation needed ]
inertial29 m/s23 g Sustainable for > 25 seconds, for a human [5]
inertial34 – 49 m/s2 3.5 – 5 g High-G roller coasters [6] :340
lab?41 m/s24.2 g Top Fuel drag racing world record of 4.4 s over 1/4 mile[ citation needed ]
inertial49 m/s25 g Causes disorientation, dizziness and fainting in humans [5]
lab?49+ m/s25+ g Formula One car, maximum under heavy braking[ citation needed ]
inertial?51 m/s25.2 g Luge, maximum expected at the Whistler Sliding Centre [ citation needed ]
lab49 – 59 m/s2 5 – 6 g Formula One car, peak lateral in turns [7]
inertial59 m/s26 g Parachutist peak during normal opening of parachute [8]
inertial+69 / -49 m/s2 +7 / -5 g Standard, full aerobatics certified glider [ citation needed ]
inertial70.6 m/s27.19 g Apollo 16 on reentry [9]
inertial79 m/s28 g F-16 aircraft pulling out of dive[ citation needed ]
inertial88 m/s29 g Maximum for a fit, trained person with G-suit to keep consciousness, avoiding G-LOC [ citation needed ]
inertial88 – 118 m/s2 9 – 12 g Typical maximum turn acceleration in an aerobatic plane or fighter jet [10]
1021 hm/s2inertial147 m/s215 g Explosive seat ejection from aircraft[ citation needed ]
177 m/s218 g Physical damage in humans like broken capillaries [5]
209 m/s221.3 g Peak acceleration experienced by cosmonauts during the Soyuz 18a abort [11]
333 m/s234 g Peak deceleration of the Stardust Sample Return Capsule on reentry to Earth [12]
454 m/s246.2 g Maximum acceleration a human has survived on a rocket sled [5]
> 491 m/s2> 50 g Death or serious injury likely[ citation needed ]
982 m/s2100 g Sprint missile [13]
982 m/s2100 g Automobile crash (100 km/h into wall) [14]
> 982 m/s2> 100 g Brief human exposure survived in crash [15]
982 m/s2100 g Deadly limit for most humans[ citation needed ]
1031 km/s2inertial
 lab
1540 m/s2157 g Peak acceleration of fastest rocket sled run [16]
1964 m/s2200 g 3.5" hard disc non-operating shock tolerance for 2 ms, weight 0.6 kg [17]
2098 m/s2214 g Highest recorded amount of g-force exposed and survived by a human (Peak deceleration experienced by Kenny Bräck in a crash at the 2003 Chevy 500) [18] [19]
2256 m/s2230 g Peak acceleration experience by the Galileo probe during descent into Jupiter's atmosphere [20]
2490 m/s2254 g Peak deceleration experienced by Jules Bianchi in crash of Marussia MR03, 2014 Japanese Grand Prix [21]
2946 m/s2300 g Soccer ball struck by foot[ citation needed ]
3200 m/s2320 g A jumping human flea [22]
3800 m/s2380 g A jumping click beetle [23]
4944 m/s2504 g Clothes on washing machine, during dry spinning (46 cm drum / 1400 rpm)
10410 km/s211 768 m/s21200 g Deceleration of the head of a woodpecker [24]
17 680 m/s21800 g Space gun with a barrel length of 1 km and a muzzle velocity of 6 km/s,
as proposed by Quicklaunch (assuming constant acceleration)
29460 m/s23000 g Baseball struck by bat [14]
~33 000 m/s2 3400 g Standard requirement for decelerative crashworthiness in certified flight recorders (such as a Boeing 737 'black box')
>49 100 m/s2>5000 g Shock capability of mechanical wrist watches [25]
84 450 m/s28600 g Current Formula One engines, maximum piston acceleration (up to 10,000 g before rev limits) [26]
105100 km/s2102 000 m/s210 400 g A mantis shrimp punch [27]
152 210 m/s215 500 g Rating of electronics built into military artillery shells [28]
196 400 m/s220 000 g Spore acceleration of the Pilobolus fungi [29]
304 420 m/s231 000 g 9×19mm Parabellum handgun bullet (average along the length of the barrel)[ citation needed ] [30]
1061 Mm/s21 000 000 m/s2100 000 g Closing jaws of a trap-jaw ant [31]
1 865 800 m/s2190 000 g 9×19mm Parabellum handgun bullet, peak[ citation needed ] [32]
3 800 000 m/s2390 000 g Surface gravity of white dwarf Sirius B [33]
3 900 000 m/s2slightly below 400 000 g Ultracentrifuge [34]
1091 Gm/s21×109 m/s2~100 000 000 g The record peak acceleration of a projectile in a coilgun, a 2 gram projectile accelerated in 1 cm from rest to 5 km/sec. [35]
10121 Tm/s21×1012 to 1×1013 m/s21×1011 to 1×1012 g Surface gravity of a neutron star [36]
2.1×1013 m/s22.1×1012 g Protons in the Large Hadron Collider [37]
10211 Zm/s29.149×1021 m/s29.33×1020 g Classical (Bohr model) acceleration of an electron around a 1H nucleus.
1.76×1023 m/s21.79×1022 g Electrons in a 1 TV/m wakefield accelerator [38]
10511 QZm/s25.5608×1051 m/s25.5719×1050 g Coherent Planck unit of acceleration

See also

References

  1. Stanford University: Gravity Probe B, Payload & Spacecraft , and NASA: Investigation of Drag-Free Control Technology for Earth Science Constellation Missions . The TRIAD 1 satellite was a later, more advanced navigation satellite that was part of the U.S. Navy’s Transit, or NAVSAT system.
  2. Gundlach, J. H; Schlamminger, S; Spitzer, C. D; Choi, K. -Y; Woodahl, B. A; Coy, J. J; Fischbach, E (2007). "Laboratory Test of Newton's Second Law for Small Accelerations" . Physical Review Letters. 98 (15): 150801. Bibcode:2007PhRvL..98o0801G. doi:10.1103/PhysRevLett.98.150801. PMID   17501332.
  3. Silverwood, Hamish; Easther, Richard (16 September 2019). "Stellar accelerations and the galactic gravitational field". Publications of the Astronomical Society of Australia. 36 e038. arXiv: 1812.07581 . doi:10.1017/pasa.2019.25. ISSN   1323-3580.
  4. Begeman, K. G.; Broeils, A. H.; Sanders, R. H. (1991-04-01). "Extended rotation curves of spiral galaxies: dark haloes and modified dynamics". Monthly Notices of the Royal Astronomical Society. 249 (3): 523–537. doi: 10.1093/mnras/249.3.523 . ISSN   0035-8711.
  5. 1 2 3 4 5 csel.eng.ohio-state.edu - High Acceleration and the Human Body, Martin Voshell, November 28, 2004 Archived August 19, 2014, at the Wayback Machine
  6. George Bibel. Beyond the Black Box: the Forensics of Airplane Crashes. Johns Hopkins University Press, 2008. ISBN   0-8018-8631-7.
  7. 6 g has been recorded in the 130R turn at Suzuka circuit, Japan. Many turns have 5 g peak values, like turn 8 at Istanbul or Eau Rouge at Spa
  8. "Archived copy". Archived from the original on 2014-12-28. Retrieved 2014-12-14.{{cite web}}: CS1 maint: archived copy as title (link)
  9. NASA: SP-368 Biomedical Results of Apollo, Chapter 5: Environmental Factors, Table 2: Apollo Manned Space Flight Reentry G Levels
  10. "Maxed out: How many gs can you pull?". New Scientist. Retrieved 2017-11-19.
  11. Hall, Rex; David Shayler (2003). Soyuz, A Universal Spacecraft. Springer Praxis. p. 193. ISBN   978-1-85233-657-8.
  12. ReVelle, D. O.; Edwards, W. N. (2007). "Stardust—An artificial, low-velocity "meteor" fall and recovery: 15 January 2006". Meteoritics and Planetary Science. 42 (2): 271. Bibcode:2007M&PS...42..271R. doi: 10.1111/j.1945-5100.2007.tb00232.x .
  13. Sprint
  14. 1 2 tomshardware.co.uk - Hard Drive Shock Tolerance - Hard-Disks - Storage Archived 2012-06-17 at the Wayback Machine , Physics, by O'hanian, 1989, 2007-01-03
  15. “Several Indy car drivers have withstood impacts in excess of 100 G without serious injuries.” Dennis F. Shanahan, M.D., M.P.H.: ”Human Tolerance and Crash Survivability , citing Society of Automotive Engineers. Indy racecar crash analysis. Automotive Engineering International, June 1999, 87–90. And National Highway Traffic Safety Administration: Recording Automotive Crash Event Data Archived 2010-04-05 at the Wayback Machine
  16. "Holloman Air Force Base - Fact Sheet (Printable) : 846 TS HYPERSONIC UPGRADE PROGRAM". Archived from the original on 2012-05-17. Retrieved 2015-04-19.
  17. wdc.com - Legacy Product Specifications : WD600BB Archived 2011-02-27 at the Wayback Machine , read 2012-01-11
  18. "Archived copy". Archived from the original on 2013-07-18. Retrieved 2013-07-23.{{cite web}}: CS1 maint: archived copy as title (link)
  19. Feel the G's: The Science of Gravity and G-Forces - by Suzanne Slade (page 37)
  20. Woodfill, Jerry. "What Did Galileo Find at Jupipter?". er.jsc.nasa.gov. NASA. Retrieved 8 November 2019.
  21. "Formula 1 - Bianchi crash impact was 254g". uk.eurosport.yahoo.com. 23 July 2015. Archived from the original on 23 July 2015.
  22. Evans, M. E. G (2009). "The jump of the click beetle (Coleoptera, Elateridae)—a preliminary study". Journal of Zoology. 167 (3): 319–336. doi:10.1111/j.1469-7998.1972.tb03115.x.
  23. "Archived copy" (PDF). Archived from the original (PDF) on 2016-03-03. Retrieved 2015-04-19.{{cite web}}: CS1 maint: archived copy as title (link)
  24. S-H Yoon; S Park (17 January 2011). "A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems" (PDF). Bioinspiration & Biomimetics . 6 (1): 12. Bibcode:2011BiBi....6a6003Y. doi:10.1088/1748-3182/6/1/016003. PMID   21245520. S2CID   2510221 . Retrieved 10 January 2016.
  25. Omega , Ball Watch Technology
  26. Cosworth V8 engine
  27. S. N. Patek, W. L. Korff & R. L. Caldwell (2004). "Deadly strike mechanism of a mantis shrimp" (PDF). Nature . 428 (6985): 819–820. Bibcode:2004Natur.428..819P. doi:10.1038/428819a. PMID   15103366. S2CID   4324997.[ permanent dead link ]
  28. "L-3 Communication's IEC Awarded Contract with Raytheon for Common Air Launched Navigation System". Archived from the original on 2016-12-24. Retrieved 2016-12-12.
  29. bu.edu - Rockets in Horse Poop Archived 2014-01-16 at the Wayback Machine , 2010-12-10
  30. Assuming an 8.04 gram bullet, a muzzle velocity of 350 metres per second (1,100 ft/s), and a 102 mm barrel.
  31. Patek SN, Baio JE, Fisher BL, Suarez AV (22 August 2006). "Multifunctionality and mechanical origins: Ballistic jaw propulsion in trap-jaw ants". Proceedings of the National Academy of Sciences . 103 (34): 12787–12792. Bibcode:2006PNAS..10312787P. doi: 10.1073/pnas.0604290103 . PMC   1568925 . PMID   16924120.
  32. Assuming an 8.04 gram bullet, a peak pressure of 240 MPa (35,000 psi) and 440 N of friction.
  33. Holberg, J. B.; Barstow, M. A.; Bruhweiler, F. C.; Cruise, A. M.; Penny, A. J. (1998). "Sirius B: A New, More Accurate View". The Astrophysical Journal. 497 (2): 935–942. Bibcode:1998ApJ...497..935H. doi: 10.1086/305489 .
  34. Berkeley Physics Course, vol. 1, Mechanics, fig. 4.1 (authors Kittel-Knight-Ruderman, 1973 edition)
  35. K. McKinney and P. Mongeau, "Multiple stage pulsed induction acceleration," in IEEE Transactions on Magnetics, vol. 20, no. 2, pp. 239-242, March 1984, doi: 10.1109/TMAG.1984.1063089.
  36. Haensel, Paweł; Potekhin, Alexander Y.; Yakovlev, Dmitry G. (2007). Neutron Stars. Springer. ISBN   978-0-387-33543-8.
  37. Calculated from their speed and radius, approximating the LHC as a circle.
  38. Rosenzweig, J. B; Andonian, G; Bucksbaum, P; Ferrario, M; Full, S; Fukusawa, A; Hemsing, E; Hidding, B; Hogan, M; Krejcik, P; Muggli, P; Marcus, G; Marinelli, A; Musumeci, P; O'Shea, B; Pellegrini, C; Schiller, D; Travish, G (2011). "Teravolt-per-meter beam and plasma fields from low-charge femtosecond electron beams". Nuclear Instruments and Methods in Physics Research A. 653 (1): 98. arXiv: 1002.1976 . Bibcode:2011NIMPA.653...98R. doi:10.1016/j.nima.2011.01.073. S2CID   118384500.