Post-polio syndrome

Last updated

Post-polio syndrome
Other namesPost-poliomyelitis syndrome, Post-polio sequelae
Clarke sm.jpg
Science fiction writer Arthur C. Clarke developed post-polio syndrome in 1988 after initially contracting polio in 1962. [1]
Specialty Infectious diseases   OOjs UI icon edit-ltr-progressive.svg

Post-polio syndrome (PPS, poliomyelitis sequelae) is a group of latent symptoms of poliomyelitis (polio), occurring in more than 80% of polio infections. The symptoms are caused by the damaging effects of the viral infection on the nervous system and typically occur 15 to 30 years after an initial acute paralytic attack. Symptoms include decreasing muscular function or acute weakness with pain and fatigue. The same may also occur years after a nonparalytic polio infection.

Contents

The precise mechanism that causes PPS is unknown. It shares many features with chronic fatigue syndrome, but unlike that disorder it tends to be progressive and can cause loss of muscle strength. Treatment is primarily limited to adequate rest, conservation of available energy, and supportive measures, such as leg braces and energy-saving devices such as powered wheelchairs, analgesia (pain relief), and sleep aids.

Signs and symptoms

After a period of prolonged stability, some people who recover from polio infections begin to experience new signs and symptoms, characterised by muscular atrophy, weakness, pain, and limb fatigue. [2] PPS is a very slowly progressing condition marked by periods of stability followed by new declines in the ability to carry out usual daily activities. [3] Most patients become aware of their decreased capacity to carry out daily routines due to significant changes in mobility and decreasing upper limb function and lung capability. Fatigue is often the most disabling symptom; even slight exertion often produces disabling fatigue and can also intensify other symptoms. [4] Problems breathing or swallowing, sleep-related breathing disorders, such as sleep apnea, and decreased tolerance for cold temperatures are other notable symptoms. [2]

Increased activity during healthy years between the original infection and onset of PPS can amplify the symptoms. Thus, contracting polio at a young age can result in particularly disabling PPS symptoms. [5]

A possible early occurring and long-lasting sign is a slight jitter exhibited in handwriting.[ citation needed ]

Mechanism

Numerous theories have been proposed to explain post-polio syndrome. Despite this, no absolutely defined causes of PPS are known. The most widely accepted theory of the mechanism behind the disorder is "neural fatigue". A motor unit is a nerve cell (or neuron) and the muscle fibers it activates. Poliovirus attacks specific neurons in the brainstem and the anterior horn cells of the spinal cord, generally resulting in the death of a substantial fraction of the motor neurons controlling skeletal muscles. In an effort to compensate for the loss of these neurons, surviving motor neurons sprout new nerve terminals to the orphaned muscle fibers. The result is some recovery of movement and the development of enlarged motor units. [3]

The neural fatigue theory proposes that the enlargement of the motor neuron fibers places added metabolic stress on the nerve cell body to nourish the additional fibers. After years of use, this stress may be more than the neuron can handle, leading to the gradual deterioration of the sprouted fibers, and eventually, the neuron itself. This causes muscle weakness and paralysis. Restoration of nerve function may occur in some fibers a second time, but eventually, nerve terminals malfunction and permanent weakness occurs. [3] When these neurons no longer carry on sprouting, fatigue occurs due to the increasing metabolic demand of the nervous system. [6] The normal aging process also may play a role. Denervation and reinnervation are going on, but the reinnervation process has an upper limit where the reinnervation cannot compensate for the ongoing denervation, and loss of motor units takes place. [7] What disturbs the denervation-reinnervation equilibrium and causes peripheral denervation, though, is still unclear. With age, most people experience a decrease in the number of spinal motor neurons. Because polio survivors have already lost a considerable number of motor neurons, further age-related loss of neurons may contribute substantially to new muscle weakness. The overuse and underuse of muscles also may contribute to muscle weakness. [8]

Another theory is that people who have recovered from polio lose remaining healthy neurons at a faster rate than normal. Little evidence exists to support this idea. [9] Finally, the initial polio infection is thought to cause an autoimmune reaction, in which the body's immune system attacks normal cells as if they were foreign substances. Again, compared to neural fatigue, the evidence supporting this theory is quite limited. [9]

Diagnosis

Diagnosis of PPS can be difficult, since the symptoms are hard to separate from complications due to the original polio infection, and from the normal infirmities of aging. No laboratory test for post-polio syndrome is known, nor are any other specific diagnostic criteria. Three important criteria are recognized, including previous diagnosis of polio, long interval after recovery, and gradual onset of weakness. [10]

In general, PPS is a diagnosis of exclusion whereby other possible causes of the symptoms are eliminated. [11] Neurological examination aided by other laboratory studies can help to determine what component of a neuromuscular deficit occurred with polio and what components are new and to exclude all other possible diagnoses. Objective assessment of muscle strength in PPS patients may not be easy. Changes in muscle strength are determined in specific muscle groups using various muscle scales that quantify strength, such as the Medical Research Council (MRC) scale. Magnetic resonance imaging, neuroimaging, and electrophysiological studies, muscle biopsies, or spinal fluid analysis may also be useful in establishing a PPS diagnosis. [11]

Management

PPS treatment concerns comfort (relieving pain via analgesics) and rest (via use of mechanisms to make life easier, such as a powered wheelchair) and is generally of palliative care. No reversive therapies are known. Fatigue is usually the most disabling symptom. Energy conservation can significantly reduce fatigue episodes. Such can be achieved by lifestyle changes, such as additional (daytime) sleep, reducing workload, and weight loss for obesity. Some require lower-limb orthotics to reduce energy usage.[ citation needed ]

Medications for fatigue, such as amantadine and pyridostigmine, are ineffective in the management of PPS. [12] Muscle strength and endurance training are more important in managing the symptoms of PPS than the ability to perform enduring aerobic activity. Management should focus on treatments such as hydrotherapy and developing other routines that encourage strength, but do not affect fatigue levels. [6] A recent trend toward use of intravenous immunoglobulin, which had yielded promising albeit modest results, [13] but as of 2010 proves insufficient to recommend as a treatment. [12]

PPS increasingly stresses the musculoskeletal system from progressive muscular atrophy. In a review of 539 PPS patients, 80% reported pain in muscles and joints and 87% had fatigue. [14] Joint instability can cause appreciable pain and should be adequately treated with painkillers. Directed activity, such as decreasing mechanical stress with braces and adaptive equipment, is recommended. [4] [6]

Because PPS can fatigue facial muscles, as well as cause dysphagia (difficulty swallowing), dysarthria (difficulty speaking) or aphonia (inability to produce speech), sufferers may become malnourished from difficulty eating. Compensatory routines can help relieve these symptoms, such as eating smaller portions at a time and sitting down whilst eating. [15] PPS with respiratory involvement requires exceptional therapy management, such as breathing exercises and chest percussion to expel secretions (clearing of the lungs) on a periodic basis (monitored via stethoscope). Failure to properly assess PPS with respiratory involvement can increase the risk of overlooking an aspiration pneumonia (a life-threatening infection of the lower respiratory tract, especially so if not caught early on). Severe cases may require permanent ventilation or tracheostomy. Sleep apnoea may also occur. Other management strategies that show improvement include smoking cessation, treatment of other respiratory diseases, and vaccination against respiratory infections such as influenza. [4]

Prognosis

In general, PPS is not life-threatening. The major exception is patients left with severe residual respiratory difficulties, who may experience new severe respiratory impairment. Compared to control populations, PPS patients lack any elevation of antibodies against the poliovirus, and because no poliovirus is excreted in the feces, it is not considered a recurrence of the original polio. Further, no evidence has shown that the poliovirus can cause a persistent infection in humans. PPS has been confused with amyotrophic lateral sclerosis (ALS), which progressively weakens muscles. PPS patients do not have an elevated risk of ALS. [6]

No sufficient longitudinal studies have been conducted on the prognosis of PPS, but speculations have been made by several physicians based on experience. Fatigue and mobility usually return to normal over a long period of time. The prognosis also differs depending upon different causes and factors affecting the patient. [5] An overall mortality rate of 25% exists due to possible respiratory paralysis; otherwise, it is usually not lethal. [16]

Prognosis can be abruptly changed for the worse by the use of anesthesia, such as during surgery. [17]

Epidemiology

Old data show PPS occurs in roughly 25 to 50% of people who survive a polio infection. [18] Newer data from countries that asked their polio survivors show 85% of respondents have symptoms of post-polio syndrome. [19] Typically, it occurs 30–35 years afterward, but delays between 8 and 71 years have been recorded. [20] [21] The disease occurs sooner in those with more severe initial infections. [21] Other factors that increase the risk of PPS include increasing length of time since acute poliovirus infection, presence of permanent residual impairment after recovery from the acute illness, [20] [21] and being female. [22] PPS is documented to occur in cases of nonparalytic polio (NPP). One review states late-onset weakness and fatigue occur in 14–42% of NPP patients. [23]

See also

Related Research Articles

<span class="mw-page-title-main">Motor neuron diseases</span> Group of neurological disorders affecting motor neurons

Motor neuron diseases or motor neurone diseases (MNDs) are a group of rare neurodegenerative disorders that selectively affect motor neurons, the cells which control voluntary muscles of the body. They include amyotrophic lateral sclerosis (ALS), progressive bulbar palsy (PBP), pseudobulbar palsy, progressive muscular atrophy (PMA), primary lateral sclerosis (PLS), spinal muscular atrophy (SMA) and monomelic amyotrophy (MMA), as well as some rarer variants resembling ALS.

<span class="mw-page-title-main">Charcot–Marie–Tooth disease</span> Neuromuscular disease

Charcot–Marie–Tooth disease (CMT) is a hereditary motor and sensory neuropathy of the peripheral nervous system characterized by progressive loss of muscle tissue and touch sensation across various parts of the body. This disease is the most commonly inherited neurological disorder, affecting about one in 2,500 people. It is named after those who classically described it: the Frenchman Jean-Martin Charcot (1825–1893), his pupil Pierre Marie (1853–1940), and the Briton Howard Henry Tooth (1856–1925).

<span class="mw-page-title-main">Polio</span> Infectious disease caused by poliovirus

Poliomyelitis, commonly shortened to polio, is an infectious disease caused by the poliovirus. Approximately 75% of cases are asymptomatic; mild symptoms which can occur include sore throat and fever; in a proportion of cases more severe symptoms develop such as headache, neck stiffness, and paresthesia. These symptoms usually pass within one or two weeks. A less common symptom is permanent paralysis, and possible death in extreme cases. Years after recovery, post-polio syndrome may occur, with a slow development of muscle weakness similar to what the person had during the initial infection.

<span class="mw-page-title-main">Myalgia</span> Painful sensations in muscle tissue

Myalgia or muscle pain is a painful sensation evolving from muscle tissue. It is a symptom of many diseases. The most common cause of acute myalgia is the overuse of a muscle or group of muscles; another likely cause is viral infection, especially when there has been no injury.

<span class="mw-page-title-main">Benign fasciculation syndrome</span> Involuntary muscle twitching in the voluntary muscles

Benign fasciculation syndrome (BFS) is characterized by fasciculation (twitching) of voluntary muscles in the body. The twitching can occur in any voluntary muscle group but is most common in the eyelids, arms, hands, fingers, legs, and feet. The tongue can also be affected. The twitching may be occasional to continuous. BFS must be distinguished from other conditions that include muscle twitches.

<span class="mw-page-title-main">Poliovirus</span> Enterovirus

Poliovirus, the causative agent of polio, is a serotype of the species Enterovirus C, in the family of Picornaviridae. There are three poliovirus serotypes, numbered 1, 2, and 3.

<i>Enterovirus</i> Genus of viruses

Enterovirus is a genus of positive-sense single-stranded RNA viruses associated with several human and mammalian diseases. Enteroviruses are named by their transmission-route through the intestine.

<span class="mw-page-title-main">Exercise intolerance</span> Inability to perform physical exercise at normal levels

Exercise intolerance is a condition of inability or decreased ability to perform physical exercise at the normally expected level or duration for people of that age, size, sex, and muscle mass. It also includes experiences of unusually severe post-exercise pain, fatigue, nausea, vomiting or other negative effects. Exercise intolerance is not a disease or syndrome in and of itself, but can result from various disorders.

<span class="mw-page-title-main">Spinal and bulbar muscular atrophy</span> Medical condition

Spinal and bulbar muscular atrophy (SBMA), popularly known as Kennedy's disease, is a rare, adult-onset, X-linked recessive lower motor neuron disease caused by trinucleotide CAG repeat expansions in exon 1 of the androgen receptor (AR) gene, which results in both loss of AR function and toxic gain of function.

<span class="mw-page-title-main">Nerve conduction velocity</span> Speed at which an electrochemical impulse propagates down a neural pathway

In neuroscience, nerve conduction velocity (CV) is the speed at which an electrochemical impulse propagates down a neural pathway. Conduction velocities are affected by a wide array of factors, which include age, sex, and various medical conditions. Studies allow for better diagnoses of various neuropathies, especially demyelinating diseases as these conditions result in reduced or non-existent conduction velocities. CV is an important aspect of nerve conduction studies.

<span class="mw-page-title-main">Fazio–Londe disease</span> Medical condition

Fazio–Londe disease (FLD), also called progressive bulbar palsy of childhood, is a very rare inherited motor neuron disease of children and young adults and is characterized by progressive paralysis of muscles innervated by cranial nerves. FLD, along with Brown–Vialetto–Van Laere syndrome (BVVL), are the two forms of infantile progressive bulbar palsy, a type of progressive bulbar palsy in children.

Flaccid paralysis is a neurological condition characterized by weakness or paralysis and reduced muscle tone without other obvious cause. This abnormal condition may be caused by disease or by trauma affecting the nerves associated with the involved muscles. For example, if the somatic nerves to a skeletal muscle are severed, then the muscle will exhibit flaccid paralysis. When muscles enter this state, they become limp and cannot contract. This condition can become fatal if it affects the respiratory muscles, posing the threat of suffocation. It also occurs in the spinal shock stage in complete transection of the spinal cord occurring in injuries such as gunshot wounds.

<span class="mw-page-title-main">Lower motor neuron lesion</span> Medical condition

A lower motor neuron lesion is a lesion which affects nerve fibers traveling from the lower motor neuron(s) in the anterior horn/anterior grey column of the spinal cord, or in the motor nuclei of the cranial nerves, to the relevant muscle(s).

<span class="mw-page-title-main">History of polio</span>

The history of polio (poliomyelitis) infections began during prehistory. Although major polio epidemics were unknown before the 20th century, the disease has caused paralysis and death for much of human history. Over millennia, polio survived quietly as an endemic pathogen until the 1900s when major epidemics began to occur in Europe. Soon after, widespread epidemics appeared in the rest of the world. By 1910, frequent epidemics became regular events throughout the developed world primarily in cities during the summer months. At its peak in the 1940s and 1950s, polio would paralyze or kill over half a million people worldwide every year.

Thyrotoxic myopathy (TM) is a neuromuscular disorder that develops due to the overproduction of the thyroid hormone thyroxine. Also known as hyperthyroid myopathy, TM is one of many myopathies that lead to muscle weakness and muscle tissue breakdown. Evidence indicates the onset may be caused by hyperthyroidism. Physical symptoms of TM may include muscle weakness, the breakdown of muscle tissue, fatigue, and heat intolerance. Physical acts such as lifting objects and climbing stairs may become increasingly difficult. If untreated, TM can be an extremely debilitating disorder that can, in extreme rare cases, lead to death. If diagnosed and treated properly the effects can be controlled and in most cases reversed leaving no lasting effects.

<span class="mw-page-title-main">ALS</span> Rare neurodegenerative disease

Amyotrophic lateral sclerosis (ALS), also known as motor neurone disease (MND) or Lou Gehrig's disease (LGD), is a rare, terminal neurodegenerative disorder that results in the progressive loss of both upper and lower motor neurons that normally control voluntary muscle contraction. ALS is the most common form of the motor neuron diseases. ALS often presents in its early stages with gradual muscle stiffness, twitches, weakness, and wasting. Motor neuron loss typically continues until the abilities to eat, speak, move, and, lastly, breathe are all lost. While only 15% of people with ALS also fully develop frontotemporal dementia, an estimated 50% face at least some minor difficulties with thinking and behavior. Depending on which of the aforementioned symptoms develops first, ALS is classified as limb-onset or bulbar-onset.

<span class="mw-page-title-main">Denervation</span> Loss of nerve supply

Denervation is any loss of nerve supply regardless of the cause. If the nerves lost to denervation are part of the neuronal communication to a specific function in the body then altered or a loss of physiological functioning can occur. Denervation can be caused by injury or be a symptom of a disorder like ALS, post-polio syndrome, or POTS. Additionally, it can be a useful surgical technique to alleviate major negative symptoms, such as in renal denervation. Denervation can have many harmful side effects such as increased risk of infection and tissue dysfunction.

Alternating hemiplegia is a form of hemiplegia that has an ipsilateral cranial nerve palsies and contralateral hemiplegia or hemiparesis of extremities of the body. The disorder is characterized by recurrent episodes of paralysis on one side of the body. There are multiple forms of alternating hemiplegia, Weber's syndrome, middle alternating hemiplegia, and inferior alternating hemiplegia. This type of syndrome can result from a unilateral lesion in the brainstem affecting both upper motor neurons and lower motor neurons. The muscles that would receive signals from these damaged upper motor neurons result in spastic paralysis. With a lesion in the brainstem, this affects the majority of limb and trunk muscles on the contralateral side due to the upper motor neurons decussation after the brainstem. The cranial nerves and cranial nerve nuclei are also located in the brainstem making them susceptible to damage from a brainstem lesion. Cranial nerves III (Oculomotor), VI (Abducens), and XII (Hypoglossal) are most often associated with this syndrome given their close proximity with the pyramidal tract, the location which upper motor neurons are in on their way to the spinal cord. Damages to these structures produce the ipsilateral presentation of paralysis or palsy due to the lack of cranial nerve decussation before innervating their target muscles. The paralysis may be brief or it may last for several days, many times the episodes will resolve after sleep. Some common symptoms of alternating hemiplegia are mental impairment, gait and balance difficulties, excessive sweating and changes in body temperature.

Polioencephalitis is a viral infection of the brain, causing inflammation within the grey matter of the brain stem. The virus has an affinity for neuronal cell bodies and has been found to affect mostly the midbrain, pons, medulla and cerebellum of most infected patients. The infection can reach up through the thalamus and hypothalamus and possibly reach the cerebral hemispheres. The infection is caused by the poliomyelitis virus which is a single-stranded, positive sense RNA virus surrounded by a non-enveloped capsid. Humans are the only known natural hosts of this virus. The disease has been eliminated from the U.S. since the mid-twentieth century, but is still found in certain areas of the world such as Africa.

Post-acute infection syndromes (PAISs) or post-infectious syndromes are medical conditions characterized by symptoms attributed to a prior infection. While it is commonly assumed that people either recover or die from infections, long-term symptoms—or sequelae—are a possible outcome as well. Examples include long COVID, Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and post-Ebola virus syndrome. Common symptoms include post-exertional malaise (PEM), severe fatigue, neurocognitive symptoms, flu-like symptoms, and pain. The pathology of most of these conditions is not understood and management is generally symptomatic.

References

  1. Jonas, Gerald (18 March 2008). "Arthur C. Clarke, Premier Science Fiction Writer, Dies at 90". New York Times . Retrieved 19 March 2008.
  2. 1 2 "Post-polio syndrome: Symptoms". MayoClinic.com. Retrieved 23 February 2009.
  3. 1 2 3 "Post-Polio Syndrome Fact Sheet: National Institute of Neurological Disorders and Stroke (NINDS)". Archived from the original on 29 July 2011. Retrieved 30 December 2008.
  4. 1 2 3 Jubelt B, Agre JC (July 2000). "Characteristics and management of postpolio syndrome". JAMA. 284 (4): 412–14. doi:10.1001/jama.284.4.412. PMID   10904484.
  5. 1 2 Howard RS (June 2005). "Poliomyelitis and the postpolio syndrome". BMJ. 330 (7503): 1314–18. doi:10.1136/bmj.330.7503.1314. PMC   558211 . PMID   15933355.
  6. 1 2 3 4 Khan F (August 2004). "Rehabilitation for postpolio sequelae" (PDF). Aust Fam Physician. 33 (8): 621–24. PMID   15373379. Archived from the original (PDF) on 7 November 2014. Retrieved 24 December 2008.
  7. Dalakas, MC; Elder, G; Hallett, M; Ravits, J; Baker, M; Papadopoulos, N; Albrecht, P; Sever, J (10 April 1986). "A long-term follow-up study of patients with post-poliomyelitis neuromuscular symptoms". The New England Journal of Medicine. 314 (15): 959–63. doi:10.1056/NEJM198604103141505. PMID   3007983.
  8. "Post-polio syndrome: Causes". MayoClinic.com. Retrieved 23 February 2009.
  9. 1 2 Stolwijk-Swüste JM, Beelen A, Lankhorst GJ, Nollet F (August 2005). "The course of functional status and muscle strength in patients with late-onset sequelae of poliomyelitis: a systematic review". Arch Phys Med Rehabil. 86 (8): 1693–701. doi:10.1016/j.apmr.2004.12.022. PMID   16084828.
  10. "Post-polio syndrome: Tests and diagnosis". MayoClinic.com. Retrieved 23 February 2009.
  11. 1 2 Silver JK, Gawne AC (2003). Postpolio Syndrome . Philadelphia: Hanley & Belfus. ISBN   978-1-56053-606-2.[ page needed ]
  12. 1 2 Koopman, Fieke Sophia; Beelen, Anita; Gilhus, Nils Erik; de Visser, Marianne; Nollet, Frans (18 May 2015). "Treatment for postpolio syndrome". The Cochrane Database of Systematic Reviews (5): CD007818. doi:10.1002/14651858.CD007818.pub3. ISSN   1469-493X. PMC   11236427 . PMID   25984923.
  13. Farbu E (2010). "Update on current and emerging treatment options for post-polio syndrome". Ther Clin Risk Manag. 6: 307–13. doi: 10.2147/TCRM.S4440 . PMC   2909497 . PMID   20668713.
  14. Ehde DM, Jensen MP, Engel JM, Turner JA, Hoffman AJ, Cardenas DD (2003). "Chronic pain secondary to disability: a review". Clin J Pain. 19 (1): 3–17. doi:10.1097/00002508-200301000-00002. PMID   12514452. S2CID   23276693.
  15. Silbergleit AK, Waring WP, Sullivan MJ, Maynard FM (March 1991). "Evaluation, treatment, and follow-up results of post polio patients with dysphagia". Otolaryngol Head Neck Surg. 104 (3): 333–38. doi:10.1177/019459989110400308. PMID   1902934. S2CID   33885580.
  16. Lindsay, Kenneth W; Ian Bone; Robin Callander; J. van Gijn (1991). Neurology and Neurosurgery Illustrated. United States: Churchill Livingstone. pp. 489–90. ISBN   978-0-443-04345-1.
  17. Lambert, David A; Giannouli, Eleni; Schmidt, Brian J (2005). "Postpolio Syndrome and Anesthesia". Anesthesiology. 103 (3): 638–44. CiteSeerX   10.1.1.694.6334 . doi:10.1097/00000542-200509000-00029. PMID   16129991. S2CID   3056696.
  18. Jubelt, B; J Drucket (1999). Poliomyelitis and the Post-Polio Syndrome in Motor Disorders. Philadelphia: Lippincott Williams and Wilkins. p. 381.
  19. Takemura, J; Saeki, S; Hachisuka, K; Aritome, K (2004). "Prevalence of post-polio syndrome based on a cross-sectional survey in Kitakyushu, Japan". Journal of Rehabilitation Medicine. 36 (1): 1–3. doi: 10.1080/16501970310017423 . PMID   15074431.
  20. 1 2 Jubelt, B; Cashman, N. R (1987). "Neurological manifestations of the post-polio syndrome". Critical Reviews in Neurobiology. 3 (3): 199–220. PMID   3315237.
  21. 1 2 3 Ramlow, J; Alexander, M; Laporte, R; Kaufmann, C; Kuller, L (1992). "Epidemiology of the Post-Polio Syndrome". American Journal of Epidemiology. 136 (7): 769–86. doi:10.1093/aje/136.7.769. PMID   1442743.
  22. "11. Poliomyelitis". Epidemiology and Prevention of Vaccine-Preventable Diseases (The Pink Book) (12th ed.). Washington DC: Public Health Foundation. 2012.
  23. Bruno, Richard L (2000). "Paralytic vs. "Nonparalytic" Polio". American Journal of Physical Medicine & Rehabilitation. 79 (1): 4–12. doi:10.1097/00002060-200001000-00003. PMID   10678596.

Further reading