Influenza C virus | |
---|---|
Virus classification | |
(unranked): | Virus |
Realm: | Riboviria |
Kingdom: | Orthornavirae |
Phylum: | Negarnaviricota |
Class: | Insthoviricetes |
Order: | Articulavirales |
Family: | Orthomyxoviridae |
Genus: | Gammainfluenzavirus |
Species: | Influenza C virus |
Influenza C virus is the only species in the genus Gammainfluenzavirus, in the virus family Orthomyxoviridae , which like other influenza viruses, causes influenza.
Influenza C viruses are known to infect humans and pigs. [1]
Flu due to the Type C species is rare compared with Types B or A, but can be severe and can cause local epidemics. Type C has 7 RNA segments and encodes 9 proteins, while Types A and B have 8 RNA segments and encode at least 10 proteins.[ citation needed ]
Influenza viruses are members of the family Orthomyxoviridae . [2] Influenza viruses A, B, C, and D represent the four antigenic types of influenza viruses. [3] Of the four antigenic types, influenza A virus is the most severe, influenza B virus is less severe but can still cause outbreaks, and influenza C virus is usually only associated with minor symptoms. [4] [5] [6] [7]
Influenza D virus is 50% similar in amino acid composition to influenza C virus, similar to the level of divergence between types A and B, while types C and D have a much greater level of divergence from types A and B. [8] [9] Influenza viruses C and D were estimated to have diverged from a common ancestor over 1,500 years ago, around 482 AD. [8] Influenza viruses A and B are estimated to have diverged from a single ancestor around 4,000 years ago, while the ancestor of influenza viruses A and B and the ancestor of influenza virus C are estimated to have diverged from a common ancestor around 8,000 years ago. [10]
Influenza A virus can infect a variety of animals as well as humans, and its natural reservoir (natural host) is birds, whereas influenza viruses B, C, and D do not have animal reservoirs. [4] [11] [8] Influenza C virus is not as easily isolated so less information is known of this type, but studies show that it occurs worldwide. [12] Influenza C virus currently has six lineages, which were estimated to have emerged around 1896 AD. [8] Metatranscriptomics studies also have identified closely related "Influenza C and D-like" viruses in several amphibian and fish species suggesting the potential for divergent influenza C/D like viruses circulating in aquatic systems. [13] [14]
This virus may be spread from person to person through respiratory droplets or by fomites (non-living material) due to its ability to survive on surfaces for short durations. [4] As with all respiratory pathogens once presumed to transmit via respiratory droplets, it is highly likely to be carried by the aerosols generated during routine breathing, talking, and even singing. [15] Influenza viruses have a relatively short incubation period (lapse of time from exposure to pathogen to the appearance of symptoms) of 18–72 hours and infect the epithelial cells of the respiratory tract. [4] Influenza virus C tends to cause mild upper respiratory infections. [16] Cold-like symptoms are associated with the virus including fever (38–40 °C), dry cough, rhinorrhea (nasal discharge), headache, muscle pain, and achiness. [4] [17] The virus may lead to more severe infections such as bronchitis and pneumonia. [16]
After an individual becomes infected, the immune system develops antibodies against that infectious agent. This is the body's main source of protection. [4] Most children between five and ten years old have already produced antibodies for influenza virus C. [17] As with all influenza viruses, type C affects individuals of all ages but is most severe in young children, the elderly and individuals with underlying health problems. [4] [18] Young children have less prior exposure and have not developed the antibodies and the elderly have less effective immune systems. [4] Influenza virus infections have one of the highest preventable mortalities in many countries of the world. [18]
Influenza viruses, like all viruses in the family Orthomyxoviridae, are enveloped RNA viruses with single stranded negative sense RNA genomes. [2] Divergent evolution of the matrix protein (M1) and nucleoprotein (NP), are used to determine if the virus is type A, B, C, or D. [4] The M1 protein is required for virus assembly and NP functions in transcription and replication. [19] [20] These viruses also contain proteins on the surface of the cell membrane called glycoproteins. Type A and B have two glycoproteins: hemagglutinin (HA) and neuraminidase (NA). Type A is divided into subtypes based on distinct differences in the types of these glycoproteins. Types C and D have only one glycoprotein: hemagglutinin-esterase fusion (HEF). [4] [21] [8] These glycoproteins allow for attachment and fusion of viral and cellular membranes. Fusion of these membranes allows the viral proteins and genome to be released into the host cell, which then causes the infection. [22] Types C and D are the only influenza viruses to express the enzyme esterase. This enzyme is similar to the enzyme neuraminidase produced by Types A and B in that they both function in destroying the host cell receptors. [16] Glycoproteins may undergo mutations (antigenic drift) or reassortment in which a new type of HA or NA is produced (antigenic shift). Influenza virus C is only capable of antigenic drift whereas Type A undergoes antigenic shift, as well. When either of these processes occur, the antibodies formed by the immune system no longer protect against these altered glycoproteins. Because of this, viruses continually cause infections. [4]
Influenza virus C is different from Types A and B in its growth requirements. Because of this, it is not isolated and identified as frequently. Diagnosis is by virus isolation, serology, and other tests. [17] Hemagglutination inhibition (HI) is one method of serology that detects antibodies for diagnostic purposes. [12] Western blot (immunoblot assay) and enzyme-linked immunosorbent assay (ELISA) are two other methods used to detect proteins (or antigens) in serum. In each of these techniques, the antibodies for the protein of interest are added and the presence of the specific protein is indicated by a color change. [23] ELISA was shown to have higher sensitivity to the HEF than the HI test. [11] Because only Influenza viruses C and D produce esterase, In Situ Esterase Assays provide a quick and inexpensive method of detecting just Types C and D. [16] If more individuals were tested for Influenza virus C as well as the other three types, infections not previously associated with Type C may be recognized. [16]
Because influenza virus A has an animal reservoir that contains all the known subtypes and can undergo antigenic shift, this type of influenza virus is capable of producing pandemics. [11] Influenza viruses A and B also cause seasonal epidemics almost every year due to their ability to antigenic drift. [3] Influenza virus C does not have this capability and it is not thought to be a significant concern for human health. [11] Therefore, there are no vaccinations against influenza virus C. [4]
Influenza A virus (IAV) is a pathogen with strains that infect birds and some mammals, as well as causing seasonal flu in humans. Mammals in which different strains of IAV circulate with sustained transmission are bats, pigs, horses and dogs; other mammals can occasionally become infected.
Human metapneumovirus is a negative-sense single-stranded RNA virus of the family Pneumoviridae and is closely related to the Avian metapneumovirus (AMPV) subgroup C. It was isolated for the first time in 2001 in the Netherlands by using the RAP-PCR technique for identification of unknown viruses growing in cultured cells. As of 2016, it was the second most common cause of acute respiratory tract illness in otherwise-healthy children under the age of 5 in a large US outpatient clinic.
Influenza hemagglutinin (HA) or haemagglutinin[p] is a homotrimeric glycoprotein found on the surface of influenza viruses and is integral to its infectivity.
Orthomyxoviridae is a family of negative-sense RNA viruses. It includes seven genera: Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus, Deltainfluenzavirus, Isavirus, Thogotovirus, and Quaranjavirus. The first four genera contain viruses that cause influenza in birds and mammals, including humans. Isaviruses infect salmon; the thogotoviruses are arboviruses, infecting vertebrates and invertebrates. The Quaranjaviruses are also arboviruses, infecting vertebrates (birds) and invertebrates (arthropods).
Antigenic drift is a kind of genetic variation in viruses, arising from the accumulation of mutations in the virus genes that code for virus-surface proteins that host antibodies recognize. This results in a new strain of virus particles that is not effectively inhibited by the antibodies that prevented infection by previous strains. This makes it easier for the changed virus to spread throughout a partially immune population. Antigenic drift occurs in both influenza A and influenza B viruses.
The measles virus (MV), with scientific name Morbillivirus hominis, is a single-stranded, negative-sense, enveloped, non-segmented RNA virus of the genus Morbillivirus within the family Paramyxoviridae. It is the cause of measles. Humans are the natural hosts of the virus; no animal reservoirs are known to exist.
Hemagglutinin esterase (HEs) is a glycoprotein that certain enveloped viruses possess and use as an invading mechanism. HEs helps in the attachment and destruction of certain sialic acid receptors that are found on the host cell surface. Viruses that possess HEs include influenza C virus, toroviruses, and coronaviruses of the subgenus Embecovirus. HEs is a dimer transmembrane protein consisting of two monomers, each monomer is made of three domains. The three domains are: membrane fusion, esterase, and receptor binding domains.
Thogotovirus is a genus of enveloped RNA viruses, one of seven genera in the virus family Orthomyxoviridae. Their single-stranded, negative-sense RNA genome has six or seven segments. Thogotoviruses are distinguished from most other orthomyxoviruses by being arboviruses – viruses that are transmitted by arthropods, in this case usually ticks. Thogotoviruses can replicate in both tick cells and vertebrate cells; one subtype has also been isolated from mosquitoes. A consequence of being transmitted by blood-sucking vectors is that the virus must spread systemically in the vertebrate host – unlike influenza viruses, which are transmitted by respiratory droplets and are usually confined to the respiratory system.
Influenza B virus is the only species in the genus Betainfluenzavirus in the virus family Orthomyxoviridae.
Influenza A virus subtype H5N1 (A/H5N1) is a subtype of the influenza A virus, which causes influenza (flu), predominantly in birds. It is enzootic in many bird populations, and also panzootic. A/H5N1 virus can also infect mammals that have been exposed to infected birds; in these cases, symptoms are frequently severe or fatal. All subtypes of the influenza A virus share the same genetic structure and are potentially able to exchange genetic material by means of reassortment
A virosome is a drug or vaccine delivery mechanism consisting of unilamellar phospholipid membrane vesicle incorporating virus derived proteins to allow the virosomes to fuse with target cells. Viruses are infectious agents that can replicate in their host organism, however virosomes do not replicate. The properties that virosomes share with viruses are based on their structure; virosomes are essentially safely modified viral envelopes that contain the phospholipid membrane and surface glycoproteins. As a drug or vaccine delivery mechanism they are biologically compatible with many host organisms and are also biodegradable. The use of reconstituted virally derived proteins in the formation of the virosome allows for the utilization of what would otherwise be the immunogenic properties of a live-attenuated virus, but is instead a safely killed virus. A safely killed virus can serve as a promising vector because it won't cause infection and the viral structure allows the virosome to recognize specific components of its target cells.
Murine coronavirus (M-CoV) is a virus in the genus Betacoronavirus that infects mice. Belonging to the subgenus Embecovirus, murine coronavirus strains are enterotropic or polytropic. Enterotropic strains include mouse hepatitis virus (MHV) strains D, Y, RI, and DVIM, whereas polytropic strains, such as JHM and A59, primarily cause hepatitis, enteritis, and encephalitis. Murine coronavirus is an important pathogen in the laboratory mouse and the laboratory rat. It is the most studied coronavirus in animals other than humans, and has been used as an animal disease model for many virological and clinical studies.
Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.
Murine respirovirus, formerly Sendai virus (SeV) and previously also known as murine parainfluenza virus type 1 or hemagglutinating virus of Japan (HVJ), is an enveloped, 150-200 nm–diameter, negative sense, single-stranded RNA virus of the family Paramyxoviridae. It typically infects rodents and it is not pathogenic for humans or domestic animals.
In virology, a spike protein or peplomer protein is a protein that forms a large structure known as a spike or peplomer projecting from the surface of an enveloped virus. The proteins are usually glycoproteins that form dimers or trimers.
Influenza, commonly known as "the flu" or just "flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms begin one to four days after exposure to the virus and last for about two to eight days. Diarrhea and vomiting can occur, particularly in children. Influenza may progress to pneumonia from the virus or a subsequent bacterial infection. Other complications include acute respiratory distress syndrome, meningitis, encephalitis, and worsening of pre-existing health problems such as asthma and cardiovascular disease.
In molecular biology, hemagglutinins are receptor-binding membrane fusion glycoproteins produced by viruses in the Paramyxoviridae and Orthomyxoviridae families. Hemagglutinins are responsible for binding to receptors on host cells to initiate viral attachment and infection.
Betacoronavirus hongkonense is a species of coronavirus in humans and animals. It causes an upper respiratory disease with symptoms of the common cold, but can advance to pneumonia and bronchiolitis. It was first discovered in January 2004 from one man in Hong Kong. Subsequent research revealed it has global distribution and earlier genesis.
A universal flu vaccine would be a flu vaccine effective against all human -adapted strains of influenza A and influenza B regardless of the virus sub type, or any antigenic drift or antigenic shift. Hence it should not require modification from year to year in order to keep up with changes in the influenza virus. As of 2024 no universal flu vaccine had been successfully developed, however several candidate vaccines were in development, with some undergoing early stage clinical trial.
Influenza D virus is a species in the virus genus Deltainfluenzavirus, in the family Orthomyxoviridae, that causes influenza.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)