Quantum state discrimination

Last updated

The term quantum state discrimination collectively refers to quantum-informatics techniques, with the help of which, by performing a small number of measurements on a physical system, its specific quantum state can be identified . And this is provided that the set of states in which the system can be is known in advance, and we only need to determine which one it is. This assumption distinguishes such techniques from quantum tomography, which does not impose additional requirements on the state of the system, but requires many times more measurements.

Contents

If the set of states in which the investigated system can be is represented by orthogonal vectors, the situation is particularly simple. To unambiguously determine the state of the system, it is enough to perform a quantum measurement in the basis formed by these vectors. The given quantum state can then be flawlessly identified from the measured value. Moreover, it can be easily shown that if the individual states are not orthogonal to each other, there is no way to tell them apart with certainty. Therefore, in such a case, it is always necessary to take into account the possibility of incorrect or inconclusive determination of the state of the system. However, there are techniques that try to alleviate this deficiency. With exceptions, these techniques can be divided into two groups, namely those based on error minimization and then those that allow the state to be determined unambiguously in exchange for lower efficiency.

The first group of techniques is based on the works of Carl W. Helstrom from the 60s and 70s of the 20th century [1] and in its basic form consists in the implementation of projective quantum measurement, where the measurement operators are projective representations. The second group is based on the conclusions of a scientific article published by ID Ivanovich in 1987 [2] and requires the use of generalized measurement, in which the elements of the POVM set are taken as measurement operators. Both groups of techniques are currently the subject of active, primarily theoretical, research, and apart from a number of special cases, there is no general solution that would allow choosing measurement operators in the form of expressible analytical formula.

More precisely, in its standard formulation, the problem involves performing some POVM on a given unknown state , under the promise that the state received is an element of a collection of states , with occurring with probability , that is, . The task is then to find the probability of the POVM correctly guessing which state was received. Since the probability of the POVM returning the -th outcome when the given state was has the form , it follows that the probability of successfully determining the correct state is . [3] [4]

Helstrom Measurement

The discrimination of two states can be solved optimally using the Helstrom measurement. [5] With two states comes two probabilities and POVMs . Since for all POVMs, . So the probability of success is:

To maximize the probability of success, the trace needs to be maximized. That's accomplished when is a projector on the positive eigenspace of , [5] and the maximal probability of success is given by

where denotes the trace norm.

Discriminating between multiple states

If the task is to discriminate between more than two quantum states, there is no general formula for the optimal POVM and success probability. Nonetheless, the optimal success probability, for the task of discriminating between the elements of a given ensemble , can always be written as [4]

This is obtained observing that is the a priori probability of getting the -th state, and is the probability of (correctly) guessing the input to be , conditioned to having indeed received the state .

While this expression cannot be given an explicit form in the general case, it can be solved numerically via Semidefinite programming. [4] An alternative approach to discriminate between a given ensemble of states is to the use the so-called Pretty Good Measurement (PGM), also known as the square root measurement. This is an alternative discrimination strategy that is not in general optimal, but can still be shown to work pretty well. [6]

Related Research Articles

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

In mathematics, particularly in functional analysis, a projection-valued measure is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurement of a subsystem of the total state, to communicate information to another observer. The theorem is important because, in quantum mechanics, quantum entanglement is an effect by which certain widely separated events can be correlated in ways that, at first glance, suggest the possibility of communication faster-than-light. The no-communication theorem gives conditions under which such transfer of information between two observers is impossible. These results can be applied to understand the so-called paradoxes in quantum mechanics, such as the EPR paradox, or violations of local realism obtained in tests of Bell's theorem. In these experiments, the no-communication theorem shows that failure of local realism does not lead to what could be referred to as "spooky communication at a distance".

<span class="mw-page-title-main">Quantum tomography</span> Reconstruction of quantum states based on measurements

Quantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state. Such a set of observations is sometimes called a quorum. The term tomography was first used in the quantum physics literature in a 1993 paper introducing experimental optical homodyne tomography.

In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is

In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.

The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In its simplest form, it states that the probability density of finding a system in a given state, when measured, is proportional to the square of the amplitude of the system's wavefunction at that state. It was formulated and published by German physicist Max Born in July, 1926.

In quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.

In quantum information theory, quantum relative entropy is a measure of distinguishability between two quantum states. It is the quantum mechanical analog of relative entropy.

In quantum computing, quantum finite automata (QFA) or quantum state machines are a quantum analog of probabilistic automata or a Markov decision process. They provide a mathematical abstraction of real-world quantum computers. Several types of automata may be defined, including measure-once and measure-many automata. Quantum finite automata can also be understood as the quantization of subshifts of finite type, or as a quantization of Markov chains. QFAs are, in turn, special cases of geometric finite automata or topological finite automata.

In physics, a quantum instrument is a mathematical abstraction of a quantum measurement, capturing both the classical and quantum outputs. It combines the concepts of measurement and quantum operation. It can be equivalently understood as a quantum channel that takes as input a quantum system and has as its output two systems: a classical system containing the outcome of the measurement and a quantum system containing the post-measurement state.

In quantum mechanics, and especially quantum information and the study of open quantum systems, the trace distanceT is a metric on the space of density matrices and gives a measure of the distinguishability between two states. It is the quantum generalization of the Kolmogorov distance for classical probability distributions.

In quantum information theory, the classical capacity of a quantum channel is the maximum rate at which classical data can be sent over it error-free in the limit of many uses of the channel. Holevo, Schumacher, and Westmoreland proved the following least upper bound on the classical capacity of any quantum channel :

Quantum refereed game in quantum information processing is a class of games in the general theory of quantum games. It is played between two players, Alice and Bob, and arbitrated by a referee. The referee outputs the pay-off for the players after interacting with them for a fixed number of rounds, while exchanging quantum information.

The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways. The min-entropy is never greater than the ordinary or Shannon entropy and that in turn is never greater than the Hartley or max-entropy, defined as the logarithm of the number of outcomes with nonzero probability.

Generalized relative entropy is a measure of dissimilarity between two quantum states. It is a "one-shot" analogue of quantum relative entropy and shares many properties of the latter quantity.

In physics, in the area of quantum information theory and quantum computation, quantum steering is a special kind of nonlocal correlation, which is intermediate between Bell nonlocality and quantum entanglement. A state exhibiting Bell nonlocality must also exhibit quantum steering, a state exhibiting quantum steering must also exhibit quantum entanglement. But for mixed quantum states, there exist examples which lie between these different quantum correlation sets. The notion was initially proposed by Erwin Schrödinger, and later made popular by Howard M. Wiseman, S. J. Jones, and A. C. Doherty.

This glossary of quantum computing is a list of definitions of terms and concepts used in quantum computing, its sub-disciplines, and related fields.

References

  1. Helstrom, Carl W. (1976). Quantum detection and estimation theory. New York: Academic Press. ISBN   978-0-12-340050-5. OCLC   316552953.
  2. Ivanovic, I.D. (August 1987). "How to differentiate between non-orthogonal states". Physics Letters A. 123 (6): 257–259. Bibcode:1987PhLA..123..257I. doi:10.1016/0375-9601(87)90222-2. ISSN   0375-9601.
  3. Bae, Joonwoo; Kwek, Leong-Chuan (2015). "Quantum state discrimination and its applications". Journal of Physics A: Mathematical and Theoretical. 48 (8): 083001. arXiv: 1707.02571 . Bibcode:2015JPhA...48h3001B. doi:10.1088/1751-8113/48/8/083001. S2CID   119199057.
  4. 1 2 3 Watrous, John (2018-04-26). The Theory of Quantum Information. Cambridge University Press. doi:10.1017/9781316848142. ISBN   978-1-316-84814-2.
  5. 1 2 Barnett, Stephen M.; Croke, Sarah (2009). "Quantum state discrimination". Adv. Opt. Photon. 1 (8): 238–278. arXiv: 0810.1970 . Bibcode:2009AdOP....1..238B. doi:10.1364/AOP.1.000238. S2CID   15398601.
  6. Montanaro, Ashley (2007). "On the distinguishability of random quantum states". Commun. Math. Phys. 273 (3): 619–636. arXiv: quant-ph/0607011 . Bibcode:2007CMaPh.273..619M. doi:10.1007/s00220-007-0221-7. S2CID   12516161.