Self-heating can

Last updated

A self-heating can is an enhancement of the common food can. Self-heating cans have dual chambers, one surrounding the other, making a self-heating food package.

Contents

In one version, the inner chamber holds the food or drink, and the outer chamber houses chemicals which undergo an exothermic reaction when combined. When the user wants to heat the contents of the can, a ring on the can - when pulled - breaks the barrier which keeps the chemicals in the outer chamber apart from the water. In another type, the chemicals are in the inner chamber and the beverage surrounds it in the outer chamber. To heat the contents of the can, the user pushes on the bottom of the can to break the barrier separating the chemical from the water. This design has the advantages of being more efficient (less heat is lost to the surrounding air) as well as reducing excessive heating of the product's exterior, causing possible discomfort to the user. In either case, after the heat from the reaction has been absorbed by the food, the user can enjoy a hot meal or drink.

Exothermic reaction Chemical reaction that releases energy as light or heat

An exothermic reaction is a chemical reaction that releases energy through light or heat. It is the opposite of an endothermic reaction.

Self-heating cans offer benefits to campers and people without access to oven, stove or camp-fire, but their use is not widespread. This is because self-heating cans are considerably more expensive than the conventional type, take more space, and have problems with uneven heating of their contents.

Technology

The source of the heat for the self-heated can is an exothermic reaction that the user initiates by pressing on the bottom of the can. The can is manufactured as a triple-walled container. A container for the beverage surrounds a container of the heating agent separated from a container of water by a thin breakable membrane. When the user pushes on the bottom of the can, a rod pierces the membrane, allowing the water and heating agent to mix. The resulting reaction releases heat and thus warms the beverage surrounding it. [1]

The heating agent and responsible reaction vary from product to product. Calcium oxide is used in the following reaction:

Calcium oxide Chemical compound

Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term "lime" connotes calcium-containing inorganic materials, in which carbonates, oxides and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single chemical compound calcium oxide. Calcium oxide that survives processing without reacting in building products such as cement is called free lime.

CaO(s)+ H2O(l) → Ca(OH)2(s)

Copper sulphate and powdered zinc can also be used, but this process is less efficient:

Zinc Chemical element with atomic number 30

Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a blue-silvery appearance when oxidation is removed. It is the first element in group 12 of the periodic table. In some respects, zinc is chemically similar to magnesium: both elements exhibit only one normal oxidation state (+2), and the Zn2+ and Mg2+ ions are of similar size. Zinc is the 24th most abundant element in Earth's crust and has five stable isotopes. The most common zinc ore is sphalerite (zinc blende), a zinc sulfide mineral. The largest workable lodes are in Australia, Asia, and the United States. Zinc is refined by froth flotation of the ore, roasting, and final extraction using electricity (electrowinning).

CuSO4(s) + Zn(s) → ZnSO4(s) + Cu(s)

Anhydrous calcium chloride is often used as well. In this case, no chemical reaction occurs, instead the heat of solution is generated.

Calcium chloride chemical compound

Calcium chloride is an inorganic compound, a salt with the chemical formula CaCl2. It is a white coloured crystalline solid at room temperature, highly soluble in water. It can be created by neutralising hydrochloric acid with calcium hydroxide.

The enthalpy of solution, enthalpy of dissolution, or heat of solution is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution.

See also

Related Research Articles

Exothermic process

In thermodynamics, the term exothermic process describes a process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light, electricity, or sound. Its etymology stems from the Greek prefix έξω and the Greek word θερμικός. The term exothermic was first coined by Marcellin Berthelot. The opposite of an exothermic process is an endothermic process, one that absorbs energy in the form of heat.

Sulfuric acid chemical compound

Sulfuric acid (alternative spelling sulphuric acid), also known as vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with molecular formula H2SO4. It is a colorless, odorless, and syrupy liquid that is soluble in water and is synthesized in reactions that are highly exothermic.

Brine A highly concentrated solution of a salt in water

Brine is a high-concentration solution of salt in water. In different contexts, brine may refer to salt solutions ranging from about 3.5% up to about 26%. Lower levels of concentration are called by different names: fresh water, brackish water, and saline water.

Flameless ration heater

A flameless ration heater, or FRH, is a water-activated exothermic chemical heater included with meals, ready-to-eat (MREs), used to heat the food. US military specifications for the heater require it be capable of raising the temperature of an 8-ounce (226.8 g) entree by 100 °F (38 °C) in twelve minutes, and that it has no visible flame.

Lye class of caustic compounds

A lye is a metal hydroxide traditionally obtained by leaching ashes, or a strong alkali which is highly soluble in water producing caustic basic solutions. "Lye" is commonly an alternative name of sodium hydroxide (NaOH) or historically potassium hydroxide (KOH), though the term "lye" refers most commonly to sodium hydroxide.

Calcium hydroxide chemical compound

Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca(OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed, or slaked with water. It has many names including hydrated lime, caustic lime, builders' lime, slack lime, cal, or pickling lime. Calcium hydroxide is used in many applications, including food preparation, where it has been identified as E number E526. Limewater is the common name for a saturated solution of calcium hydroxide.

Reuse of bottles waste management

A reusable bottle is a bottle that can be reused, as in the case as by the original bottler or by end-use consumers. Reusable bottles have grown in popularity by consumers for both environmental and health safety reasons. Reusable bottles are one example of reusable packaging.

Calcium sulfate laboratory and industrial chemical

Calcium sulfate (or calcium sulphate) is the inorganic compound with the formula CaSO4 and related hydrates. In the form of γ-anhydrite (the anhydrous form), it is used as a desiccant. One particular hydrate is better known as plaster of Paris, and another occurs naturally as the mineral gypsum. It has many uses in industry. All forms are white solids that are poorly soluble in water. Calcium sulfate causes permanent hardness in water.

The heating value of a substance, usually a fuel or food, is the amount of heat released during the combustion of a specified amount of it.

Closure (container) devices and techniques used to close or seal a bottle, jug, jar, tube, can, etc.

Closures are devices and techniques used to close or seal container such as a bottle, jug, jar, tube, can, etc. Closures can be a cap, cover, lid, plug, etc.

A heating pad is a pad used for warming of parts of the body in order to manage pain. Localized application of heat causes the blood vessels in that area to dilate, enhancing perfusion to the targeted tissue. Types of heating pads include electrical, chemical and hot water bottles.

Carbide lamp Acetylene-burning lamps

Carbide lamps, or acetylene gas lamps, are simple lamps that produce and burn acetylene (C2H2) which is created by the reaction of calcium carbide (CaC2) with water (H2O).

Thermal decomposition, or thermolysis, is a chemical decomposition caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion.

Induction sealing The process of bonding thermoplastic materials by induction heating

Induction sealing is the process of bonding thermoplastic materials by induction heating. This involves controlled heating an electrically conducting object by electromagnetic induction, through heat generated in the object by eddy currents.

Self-heating food packaging

Self-heating food packaging (SHFP) is active packaging with the ability to heat food contents without external heat sources or power. Packets typically use an exothermic chemical reaction. Packets can also be self-cooling. These packages are useful for military operations, during natural disasters, or whenever conventional cooking is not available. These packages are often used to prepare main courses such as meat dishes, which are more palatable when hot.

The terms active packaging, intelligent packaging, and smart packaging refer to packaging systems used with foods, pharmaceuticals, and several other types of products. They help extend shelf life, monitor freshness, display information on quality, improve safety, and improve convenience.

Nanoreactors are a form of chemical reactor that are particularly in the disciplines of nanotechnology and nanobiotechnology. These special reactors are crucial in maintaining a working nanofoundry; which is essentially a foundry that manufactures products on a nanotechnological scale.

References

Books, general references