Shikimate dehydrogenase

Last updated
Shikimate dehydrogenase
Shikimate Dehydrogenase Cartoon 1.png
Identifiers
EC no. 1.1.1.25
CAS no. 9026-87-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a shikimate dehydrogenase (EC 1.1.1.25) is an enzyme that catalyzes the chemical reaction

Contents

shikimate + NADP+ 3-dehydroshikimate + NADPH + H+

Thus, the two substrates of this enzyme are shikimate and NADP+, whereas its 3 products are 3-dehydroshikimate, NADPH, and H+. This enzyme participates in phenylalanine, tyrosine and tryptophan biosynthesis.

Function

Shikimate dehydrogenase is an enzyme that catalyzes one step of the shikimate pathway. This pathway is found in bacteria, plants, fungi, algae, and parasites and is responsible for the biosynthesis of aromatic amino acids (phenylalanine, tyrosine, and tryptophan) from the metabolism of carbohydrates. In contrast, animals and humans lack this pathway hence products of this biosynthetic route are essential amino acids that must be obtained through an animal's diet.

There are seven enzymes that play a role in this pathway. Shikimate dehydrogenase (also known as 3-dehydroshikimate dehydrogenase) is the fourth step of the seven step process. This step converts 3-dehydroshikimate to shikimate as well as reduces NADP+ to NADPH.

Nomenclature

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is shikimate:NADP+ 3-oxidoreductase. Other names in common use include:

Reaction

The Shikimate Dehydrogenase Reaction Shikimate dehydrogenase.png
The Shikimate Dehydrogenase Reaction

Shikimate Dehydrogenase catalyzes the reversible NADPH-dependent reaction of 3-dehydroshikimate to shikimate. [1] The enzyme reduces the carbon-oxygen double bond of a carbonyl functional group to a hydroxyl (OH) group, producing the shikimate anion. The reaction is NADPH dependent with NADPH being oxidised to NADP+.

Structure

N terminal domain

Shikimate dehydrogenase, N terminal domain
PDB 1nyt EBI.jpg
Shikimate dehydrogenase AroE complexed with NADP+
Identifiers
SymbolShikimate_dh_N
Pfam PF08501
InterPro IPR013708
SCOP2 1vi2 / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The Shikimate dehydrogenase substrate binding domain found at the N-terminus binds to the substrate, 3-dehydroshikimate. [2] It is considered to be the catalytic domain. It has a structure of six beta strands forming a twisted beta sheet with four alpha helices. [2]

C terminal domain

Shikimate Dehydrogenase C terminal
PDB 1gpj EBI.jpg
Glutamyl-tRNA reductase from methanopyrus kandleri
Identifiers
SymbolShikimate_DH
Pfam PF01488
Pfam clan CL0063
InterPro IPR006151
SCOP2 1nyt / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The C-terminal domain binds to NADPH. It has a special structure, a Rossmann fold, whereby six-stranded twisted and parallel beta sheet with loops and alpha helices surrounding the core beta sheet. [2]

The Structure of Shikimate dehydrogenase is characterized by two domains, two alpha helices and two beta sheets with a large cleft separating the domains of the monomer. [3] The enzyme is symmetrical. Shikimate dehydrogenase also has an NADPH binding site that contains a Rossmann fold. This binding site normally contains a glycine P-loop. [1] The domains of the monomer show a fair amount of flexibility suggesting that the enzyme can open in close to bind with the substrate 3-Dehydroshikimate. Hydrophobic interactions occur between the domains and the NADPH binding site. [1] This hydrophobic core and its interactions lock the shape of the enzyme even though the enzyme is a dynamic structure. There is also evidence to support that the structure of the enzyme is conserved, meaning the structure takes sharp turns in order to take up less space.

The cleft in the shikimate dehydrogenase monomer. The green selection is the loops surrounding the cleft, and the red selection shows alpha helices in the background. Cleft in Shikimate Dehydrogenase.png
The cleft in the shikimate dehydrogenase monomer. The green selection is the loops surrounding the cleft, and the red selection shows alpha helices in the background.

Paralogs

Escherichia coli (E. coli) expresses two different forms of shikimate dehydrogenase, AroE and YdiB. These two forms are paralogs of each other. The two forms of shikimate dehydrogenase have different primary sequences in different organisms but catalyze the same reactions. There is about 25% similarity between the sequences of AroE and YdiB, but their two structures have similar structures with similar folds. YdiB can utilize NAD or NADP as a cofactor and also reacts with quinic acid. [3] They both have high affinity of their ligands as shown by their similar enzyme (Km) values. [3] Both forms of the enzyme are independently regulated. [3]

Shikimate dehydrogenase YdiB with highlighted NADH binding sites. The red color of the surface of the structure shows alpha helices, the yellow shows beta sheets, and the green area shows where there are loops in the enzyme. Ydib and NADH Binding Sites 2.png
Shikimate dehydrogenase YdiB with highlighted NADH binding sites. The red color of the surface of the structure shows alpha helices, the yellow shows beta sheets, and the green area shows where there are loops in the enzyme.
The AroE form of shikimate dehydrogenase with highlighted NADP binding sites. The red color shows where the alpha helices are, the green shows the loops, and the yellow shows the beta sheets in the structure. AroE with NADP+ Binding Sites.png
The AroE form of shikimate dehydrogenase with highlighted NADP binding sites. The red color shows where the alpha helices are, the green shows the loops, and the yellow shows the beta sheets in the structure.

Applications

The shikimate pathway is a target for herbicides and other non-toxic drugs because the shikimate pathway is not present in humans. Glyphosate, a commonly used herbicide, is an inhibitor of 5-enolpyruvylshikimate 3-phosphate synthase or EPSP synthase, an enzyme in the shikimate pathway. The problem is that this herbicide has been utilized for about 20 years and now some plants have now emerged that are glyphosate-resistant. This has relevance to research on shikimate dehydrogenase because it is important to maintain diversity in the enzyme blocking process in the shikimate pathway and with more research shikimate dehydrogenase could be the next enzyme to be inhibited in the shikimate pathway. In order to design new inhibitors the structures for all the enzymes in the pathway have needed to be elucidated. The presence of two forms of the enzyme complicate the design of potential drugs because one could compensate for the inhibition of the other. Also there the TIGR data base shows that there are 14 species of bacteria with the two forms of shikimate dehydrogenase. [3] This is a problem for drug makers because there are two enzymes that a potential drug would need to inhibit at the same time. [3]

Related Research Articles

<span class="mw-page-title-main">Rossmann fold</span> Protein fold

The Rossmann fold is a tertiary fold found in proteins that bind nucleotides, such as enzyme cofactors FAD, NAD+, and NADP+. This fold is composed of alternating beta strands and alpha helical segments where the beta strands are hydrogen bonded to each other forming an extended beta sheet and the alpha helices surround both faces of the sheet to produce a three-layered sandwich. The classical Rossmann fold contains six beta strands whereas Rossmann-like folds, sometimes referred to as Rossmannoid folds, contain only five strands. The initial beta-alpha-beta (bab) fold is the most conserved segment of the Rossmann fold. The motif is named after Michael Rossmann who first noticed this structural motif in the enzyme lactate dehydrogenase in 1970 and who later observed that this was a frequently occurring motif in nucleotide binding proteins.

<span class="mw-page-title-main">Aldose reductase</span> Enzyme

In enzymology, aldose reductase is an enzyme in humans encoded by the gene AKR1B1. It is an cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monosaccharides, and primarily known for catalyzing the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism.

<span class="mw-page-title-main">GMP reductase</span> Class of enzymes

GMP reductase EC 1.7.1.7 is an enzyme that catalyzes the irreversible and NADPH-dependent reductive deamination of GMP into IMP.

In enzymology, an aryl-alcohol dehydrogenase (NADP+) (EC 1.1.1.91) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Homoserine dehydrogenase</span> Enzyme

In enzymology, a homoserine dehydrogenase (EC 1.1.1.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphogluconate dehydrogenase (decarboxylating)</span>

In enzymology, a phosphogluconate dehydrogenase (decarboxylating) (EC 1.1.1.44) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-oxoacyl-(acyl-carrier-protein) reductase</span> Enzyme

In enzymology, a 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100) is an enzyme that catalyzes the chemical reaction

In enzymology, a 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (EC 1.3.1.28) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Acyl-CoA dehydrogenase (NADP+)</span> Class of enzymes

In enzymology, an acyl-CoA dehydrogenase (NADP+) (EC 1.3.1.8) is an enzyme that catalyzes the chemical reaction

In enzymology, an enoyl-[acyl-carrier-protein] reductase (NADPH, B-specific) (EC 1.3.1.10) is an enzyme that catalyzes the chemical reaction

In enzymology, an aryl-aldehyde dehydrogenase (NADP+) (EC 1.2.1.30) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aspartate-semialdehyde dehydrogenase</span> Amino-acid-synthesizing enzyme in fungi, plants and prokaryota

In enzymology, an aspartate-semialdehyde dehydrogenase is an enzyme that is very important in the biosynthesis of amino acids in prokaryotes, fungi, and some higher plants. It forms an early branch point in the metabolic pathway forming lysine, methionine, leucine and isoleucine from aspartate. This pathway also produces diaminopimelate which plays an essential role in bacterial cell wall formation. There is particular interest in ASADH as disabling this enzyme proves fatal to the organism giving rise to the possibility of a new class of antibiotics, fungicides, and herbicides aimed at inhibiting it.

In enzymology, a glutamate-5-semialdehyde dehydrogenase (EC 1.2.1.41) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38) is an enzyme that catalyzes the chemical reaction

In enzymology, a ferredoxin-NADP+ reductase (EC 1.18.1.2) abbreviated FNR, is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Saccharopine dehydrogenase (NADP+, L-glutamate-forming)</span>

In enzymology, a saccharopine dehydrogenase (NADP+, L-glutamate-forming) (EC 1.5.1.10) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-dehydroquinate dehydratase</span> Class of enzymes

The enzyme 3-dehydroquinate dehydratase (EC 4.2.1.10) catalyzes the chemical reaction

<span class="mw-page-title-main">Chorismate synthase</span>

The enzyme chorismate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Aldo-keto reductase</span> Protein family

The aldo-keto reductase family is a family of proteins that are subdivided into 16 categories; these include a number of related monomeric NADPH-dependent oxidoreductases, such as aldehyde reductase, aldose reductase, prostaglandin F synthase, xylose reductase, rho crystallin, and many others.

<span class="mw-page-title-main">Proton-Translocating NAD(P)+ Transhydrogenase</span>

Proton-Translocating NAD(P)+ Transhydrogenase (E.C. 7.1.1.1) is an enzyme in that catalyzes the translocation of hydrons that are connected to the redox reaction NADH + NADP+ + H+outside => NAD+ + NADPH + H+inside

References

  1. 1 2 3 Ye S, Von Delft F, Brooun A, Knuth MW, Swanson RV, McRee DE (July 2003). "The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode". J. Bacteriol. 185 (14): 4144–51. doi:10.1128/JB.185.14.4144-4151.2003. PMC   164887 . PMID   12837789.
  2. 1 2 3 Lee HH (2012). "High-resolution structure of shikimate dehydrogenase from Thermotoga maritima reveals a tightly closed conformation". Mol Cells. 33 (3): 229–33. doi:10.1007/s10059-012-2200-x. PMC   3887703 . PMID   22095087.
  3. 1 2 3 4 5 6 Michel G, Roszak AW, Sauvé V, Maclean J, Matte A, Coggins JR, Cygler M, Lapthorn AJ (May 2003). "Structures of shikimate dehydrogenase AroE and its Paralog YdiB. A common structural framework for different activities". J. Biol. Chem. 278 (21): 19463–72. doi: 10.1074/jbc.M300794200 . PMID   12637497.

Further reading