Sinornis Temporal range: Early Cretaceous, | |
---|---|
Fossil specimen, Beijing Museum of Natural History | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Dinosauria |
Clade: | Saurischia |
Clade: | Theropoda |
Clade: | Avialae |
Clade: | † Enantiornithes |
Genus: | † Sinornis Sereno & Rao, 1992 |
Species: | †S. santensis |
Binomial name | |
†Sinornis santensis Sereno & Rao, 1992 | |
Sinornis is a genus of enantiornithean birds from the Lower Cretaceous Jiufotang Formation of the People's Republic of China.
When it was described in 1992, this 120 million-year-old sparrow-sized skeleton represented a new avian sharing "primitive" features with Archaeopteryx as well as showing traits of modern birds. Its basal features include, but are not limited to, a flexible manus with unguals, a footed pubis, and stomach ribs. Sinornis is known only from the type species, Sinornis santensis. The generic name comes from the Latin Sino~, 'China' and the Greek ornis, 'bird'. The specific name santensis refers to the provenance from Chaoyang county in Liaoning Province as Santa, meaning "Three Temples", is a traditional name of the county. [1]
The holotype skeleton of Sinornis, BPV 538a-b, consists of a plate and counterplate of fine-grained freshwater lake sediment as proven by numerous fish, insect, and plant remains. [2] The skeleton was found in the Jiufotang Formation at Liaoning, People's Republic of China. The skeleton exhibits remarkable basal features shared with Archaeopteryx, a genus of early bird that is transitional between older feathered dinosaurs and modern birds. Until the discovery of Sinornis scientists did not know much about the evolution of flight that lead to modern birds because Archaeopteryx, which lived in the Late Jurassic period around 150 million years ago, lacks many of the adaptations of modern birds for flight and perching. [2] Some of the primitive features found in Sinornis include moderately recurved manual unguals, as opposed to the high-recurved one in Archaeopteryx. Sinornis shares a similar pelvis with the latter genus, but its pelvic girdle has free elements unlike the fused ones found in modern birds. The iliac blades are erect and the ischium is blade-shaped rather than strap-shaped. [3] Analogous to Archaeopteryx and older theropod dinosaurs, its pubis appears to be directed more ventrally and terminates distally in a hook-shaped "boot". [2]
As in Archaeopteryx, the skull of Sinornis has a proportionately short, toothed snout. There are broad nasal bones that expands caudally to the external nares, with a triangular caudal margin. The dorsal and central margins of the caudal half of the maxilla run parallel while its jugal ramus does not taper caudally. [4]
The postcranial skeleton features a separate carpus and manus in the forelimb. The manus, hand, is composed of freely articulating metacarpals, with well-formed phalanges and unguals on the first and second digits. The thorax is closed at the underside, by gastralia. The pelvis has a footed pubis. [4]
Derived bird traits in the skeleton of Sinornis are typically flight or perching adaptations. At a time when very few intermediary forms were known, the fossil seemed to provide an early glimpse of flight evolution, showing the intermediate evolutionary step between the "primitive" wings of Archaeopteryx to specialized wings of modern birds. [1] As in modern birds, Sinornis had a modified wrist bone, with a groove that lets the wrist bend sharply back, tightly tucking the wings during flight or rest. Sinornis was capable of flight similar to modern birds based on breastbone and shoulder structures that provided both room and support for bulky aerobic flight muscles. [5] It also had reduced claws and small hands with a stable second finger that anchored important flight feathers. Unlike the fused finger bones of modern birds, Sinornis had separate finger bones that were well adapted for flight, while the reduction of the tail moved the centre of gravity forwards. [1] Sinornis was also capable of perching and climbing. [1]
Discovered by a Chinese farmer prior to 1992, the fossil of Sinornis sheds light on the evolutionary steps that transitioned birds into strong, specialized flyers. Paul Sereno of the University of Chicago and his colleague Rao Chenggang of the Beijing Natural History Museum were the first to name and describe the skeleton of Sinornis. [1]
Before this find much of what scientists knew about the origin of birds came from Archaeopteryx, a Jurassic species with a confusing mix of reptilian and bird-like traits. Sinornis shared many traits with modern birds while retaining certain basal characteristics of Archaeopteryx, so that in 1992 it could be presented as the missing link in avian evolution. [1] [2] There were other fossils discovered before Sinornis that were younger than Archaeopteryx, but Sinornis skeleton was the most complete. The fossil of Sinornis was originally dated to about 135 million years, which seemed to show that about 15 million years after Archaeopteryx the transition to the modern wing was well underway. However, later research showed that the layers in which the fossil was found were in fact about 120 to 110 million years old, reducing the importance of Sinornis. After the discovery of Sinornis, older fossils were discovered that shared even more basal features with Archaeopteryx.
Paul Sereno et al. (2001) considered a similar prehistoric bird species from the same formation, Cathayornis , to be a junior synonym of Sinornis. They interpreted the anatomies of the two as very similar and sharing key autapomorphies of the pygostyle.
However, also in 2001, Zhou and Hou continued to distinguish Cathayornis from Sinornis by the former's larger size, a shorter, straighter, finger number I, with a slightly longer claw (ungual), the absence of an atitrochanter, and other features. [6] A paper describing a second species of Cathayornis in 2008 by Li et al. also considered the genera to be distinct. [4] [7]
The first thorough review of Sinornis and Cathayornis was published by Jingmai O'Connor and Gareth Dyke in 2010. O'Connor and Dyke concluded that despite the 2001 paper by Sereno and colleagues, the two birds were not synonyms and in fact differ in several clear ways, including different proportions in the wing claws and digits, differences in the pelvis, and size of the pygostyle. [4]
The holotype skeleton of both Cathayornis y. and Sinornis was discovered in China, but in different regions. Their skeletons are small, so they were preserved similarly using molds and casts to facilitate the study the specimens. [4]
Sinornis, the most complete known enantiornithean at the time, provides a detailed view of basal avian characteristics. [5] Based on features present on the preserved skeleton of Sinornis, it shared similarity in flight performance and perching capabilities to sparrow-sized birds living today in arboreal habitats. Its thorax is strengthened to resist forces generated by an increase in pectoral muscle mass. Its coracoid expands distally to form broad, lengthened struts attached to the sternum. It also had a robust cranial rib and ossified sternal ribs. It has a V-shaped ulnare in the wrist for articulation with the metacarpus which allowed greater flexion during upstroke, important in small-bodied fliers for decreasing drag. [7] The presence of a fully opposable hallux with a particularly large ungual and the pedal claws being strongly recurved are indicators of an advanced perching function and shows that the bird lived primarily in an arboreal habitat. [8]
Archaeopteryx, sometimes referred to by its German name, "Urvogel" is a genus of bird-like dinosaurs. The name derives from the ancient Greek ἀρχαῖος (archaīos), meaning "ancient", and πτέρυξ (ptéryx), meaning "feather" or "wing". Between the late 19th century and the early 21st century, Archaeopteryx was generally accepted by palaeontologists and popular reference books as the oldest known bird. Older potential avialans have since been identified, including Anchiornis, Xiaotingia, and Aurornis.
Protoavis is a problematic taxon known from fragmentary remains from Late Triassic Norian stage deposits near Post, Texas. The animal's true classification has been the subject of much controversy, and there are many different interpretations of what the taxon actually is. When it was first described, the fossils were described as being from a primitive bird which, if the identification is valid, would push back avian origins some 60–75 million years.
Alvarezsauridae is a family of small, long-legged dinosaurs. Although originally thought to represent the earliest known flightless birds, they are now thought to be an early diverging branch of maniraptoran theropods. Alvarezsaurids were highly specialized. They had tiny but stout forelimbs, with compact, bird-like hands. Their skeletons suggest that they had massive breast and arm muscles, possibly adapted for digging or tearing. They had long, tube-shaped snouts filled with tiny teeth. They have been interpreted as myrmecophagous, adapted to prey on colonial insects such as termites, with the short arms acting as effective digging instruments to break into nests.
Confuciusornis is a genus of basal crow-sized avialan from the Early Cretaceous Period of the Yixian and Jiufotang Formations of China, dating from 125 to 120 million years ago. Like modern birds, Confuciusornis had a toothless beak, but closer and later relatives of modern birds such as Hesperornis and Ichthyornis were toothed, indicating that the loss of teeth occurred convergently in Confuciusornis and living birds. It was thought to be the oldest known bird to have a beak, though this title now belongs to an earlier relative Eoconfuciusornis. It was named after the Chinese moral philosopher Confucius. Confuciusornis is one of the most abundant vertebrates found in the Yixian Formation, and several hundred complete specimens have been found.
The Enantiornithes, also known as enantiornithines or enantiornitheans in literature, are a group of extinct avialans, the most abundant and diverse group known from the Mesozoic era. Almost all retained teeth and clawed fingers on each wing, but otherwise looked much like modern birds externally. Over seventy species of Enantiornithes have been named, but some names represent only single bones, so it is likely that not all are valid. The Enantiornithes became extinct at the Cretaceous–Paleogene boundary, along with Hesperornithes and all other non-avian dinosaurs.
Iberomesornis is a monotypic genus of enantiornithine bird of the Cretaceous of Spain.
Jeholornis is a genus of avialan dinosaurs that lived between approximately 122 and 120 million years ago during the early Cretaceous Period in China. Fossil Jeholornis were first discovered in the Jiufotang Formation in Hebei Province, China and additional specimens have been found in the older Yixian Formation.
The scientific question of within which larger group of animals birds evolved has traditionally been called the "origin of birds". The present scientific consensus is that birds are a group of maniraptoran theropod dinosaurs that originated during the Mesozoic era.
Confuciusornithidae is an extinct family of pygostylian avialans known from the Early Cretaceous, found in northern China. They are commonly placed as a sister group to Ornithothoraces, a group that contains all extant birds along with their closest extinct relatives. Confuciusornithidae contains four genera, possessing both shafted and non-shafted (downy) feathers. Some specimens probably referable to this clade represents one of the earliest known fossil evidence of primary feather moulting. They are also noted for their distinctive pair of ribbon-like tail feathers of disputed function.
Eoalulavis is a monotypic genus of enantiornithean bird that lived during the Barremian, in the Lower Cretaceous around 125 million years ago. The only known species is Eoalulavis hoyasi.
Cathayornis is a genus of enantiornithean birds from the Jiufotang Formation of Liaoning, People's Republic of China. It is known definitively from only one species, Cathayornis yandica, one of the first Enantiornithes found in China. Several additional species were once incorrectly classified as Cathayornis, and have since been reclassified or regarded as nomina dubia.
Neuquenornis volans is a species of enantiornithean birds which lived during the late Cretaceous period in today's Patagonia, Argentina. It is the only known species of the genus Neuquenornis. Its fossils were found in the Santonian Bajo de la Carpa Formation, dating from about 85-83 million years ago. This was a sizeable bird for its time, with a tarsometatarsus 46.8mm long. Informal estimates suggest that it measured nearly 30 cm (12 in) in length excluding the tail.
Ornithothoraces is a group of avialan dinosaurs that includes all enantiornithes and the euornithes, which includes modern birds and their closest ancestors. The name Ornithothoraces means "bird thoraxes". This refers to the modern, highly advanced anatomy of the thorax that gave the ornithothoracines superior flight capability compared with more primitive avialans. This anatomy includes a large, keeled breastbone, elongated coracoids and a modified glenoid joint in the shoulder, and a semi-rigid rib cage. In spite of this at least the sternum seems to have developed convergently rather than being a true homology.
The proximodorsal process is a feature of the skeleton of archosaurs. It may be a pair of tabs or blade - shaped flanges on the pelvis, and serves as an anchor point for the attachment of leg muscles. This process is of particular importance in the anatomy and comparative morphology of Mesozoic birds and advanced maniraptoran dinosaurs. The pelvis is made up of three paired bones and a sacrum. The three paired bones are called the ilium, the ischium, and the pubis. On the ischium there may be an obturator process and/or a proximodorsal process. The more primitive condition is for there to be no proximodorsal process, but a large obturator process. In primitive birds the ischia are complex, usually with a small or even absent obturator process and a large, rectangular, proximodorsal process extending up toward the ilium. This is the condition in Archaeopteryx, Confuciusornis, and enantiornithines. The South American dromaeosaurs called the unenlagiinae have an intermediate condition between the two, with both a large obturator process and a proximodorsal process.
Avisauridae is a family of extinct enantiornithine dinosaurs from the Cretaceous period, distinguished by several features of their ankle bones. Depending on the definition used, Avisauridae is either a broad and widespread group of advanced enantiornithines, or a small family within that group, restricted to species from the Late Cretaceous of North and South America.
Shanweiniao is a genus of long-snouted enantiornithean birds from Early Cretaceous China. One species is known, Shanweiniao cooperorum. There is one known fossil, a slab and counterslab. The fossil is in the collection of the Dalian Natural History Museum, and has accession number DNHM D1878/1 and DNHM1878/2. It was collected from the Lower Cretaceous Dawangzhengzi Beds, middle Yixian Formation, from Lingyuan in the Liaoning Province, China.
Longipterygidae is a family of early enantiornithean avialans from the Early Cretaceous epoch of China. All known specimens come from the Jiufotang Formation and Yixian Formation, dating to the early Aptian age, 125-120 million years ago.
Aurornis is an extinct genus of anchiornithid theropod dinosaurs from the Jurassic period of China. The genus Aurornis contains a single known species, Aurornis xui. Aurornis xui may be the most basal ("primitive") avialan dinosaur known to date, and it is one of the earliest avialans found to date. The fossil evidence for the animal pre-dates that of Archaeopteryx lithographica, often considered the earliest bird species, by about 10 million years.
Houornis is a genus of enantiornithean birds from the Jiufotang Formation of Liaoning, People's Republic of China. It is known from a single species, Houornis caudatus, which had been once been classified as a species of Cathayornis, and has also been regarded as a nomen dubium.
Jianianhualong is a genus of troodontid theropod dinosaur from the Early Cretaceous of China. It contains a single species, Jianianhualong tengi, named in 2017 by Xu Xing and colleagues based on an articulated skeleton preserving feathers. The feathers at the middle of the tail of Jianianhualong are asymmetric, being the first record of asymmetrical feathers among the troodontids. Despite aerodynamic differences from the flight feathers of modern birds, the feathers in the tail vane of Jianianhualong could have functioned in drag reduction whilst the animal was moving. The discovery of Jianianhualong supports the notion that asymmetrical feathers appeared early in the evolutionary history of the Paraves.