Stylonurina

Last updated

Stylonurina
Temporal range: Middle Ordovician - Late Permian, 460–251.9  Ma
Parastylonurus ornatus sixth appendage.png
The defining characteristic of stylonurine eurypterids is that the sixth pair of legs remain normal limbs used for walking. Reconstructed leg of Parastylonurus .
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Chelicerata
Order: Eurypterida
Suborder: Stylonurina
Diener, 1924
Clades
Incertae sedis
Synonyms [1]
  • Woodwardopterina Kjellesvig-Waering, 1959
  • Hibbertopterina Størmer, 1974

Stylonurina is one of two suborders of eurypterids, a group of extinct arthropods commonly known as "sea scorpions". Members of the suborder are collectively and informally known as "stylonurine eurypterids" or "stylonurines". They are known from deposits primarily in Europe and North America, but also in Siberia. [2]

Contents

Compared to the other suborder, Eurypterina, the stylonurines were comparatively rare and retained their posterior prosomal appendages for walking. Despite their rarity, the stylonurines have the longest temporal range of the two suborders. The suborder contains some of the oldest known eurypterids, such as Brachyopterus , from the Middle Ordovician as well as the youngest known eurypterids, from the Late Permian. They remained rare throughout the Ordovician and Silurian, though the radiation of the mycteropoids (a group of large sweep-feeding forms) in the Late Devonian and Carboniferous is the last major radiation of the eurypterids before their extinction in the Permian. [3]

Though the Eurypterina contains several famous giant eurypterids such as Pterygotus and Jaekelopterus , the Stylonurina gave rise to large forms as well, several larger than a metre in length. The largest known stylonurine was Hibbertopterus scouleri , with a potential length of almost 2 metres (6 ft 7 in). [4]

Description

Fossil of Stylonurella spinipes, a stylonuroid. The Eurypterida of New York figure 63.jpg
Fossil of Stylonurella spinipes , a stylonuroid.

Stylonurina contains a wide variety of different genera and species. They are all unified by possessing transverse sutures on the ventral plates and lacking a modified podomere 7a on appendage VI. [3]

The suborder is divided into four major superfamilies; the Rhenopteroidea, Stylonuroidea, Kokomopteroidea and Mycteropoidea. The most primitive of these, the Rhenopteroidea, includes several previously enigmatic genera, such as Brachyopterus , Kiaeropterus and Rhenopterus , all united by a rounded posterior margin to the metastoma and the prosomal appendage III bearing single fixed spines. Brachyopterus is also one of the oldest known genera of eurypterid, being from the Middle Ordovician. [3]

The least well-supported group is the Stylonuroidea, containing the problematic genera Stylonurus and Stylonurella , partly due to the incomplete nature of the only known specimen of Stylonurus powriei which does not preserve the anterior prosomal appendages or any details of the ventral structures. Specimens of other members of the group are similarly incomplete, with Stylonurella spinipes not preserving the metastoma or pretelson and telson and Pagea sturrocki not preserving any dorsal structures. [3]

The superfamilies Mycteropoidea and Kokomopteroidea are sister groups, united by a median ridge on the carapace between the lateral eyes and a distal thickening to the podomeres of the prosomal appendages. Though sometimes classified as an order separate from Eurypterida itself, the hibbertopterids are clearly recovered as stylonurine eurypterids in the latest analyses of the group. [3]

Convergent evolution of sweep-feeding

Strategies for sweep-feeding (raking through the substrate in search of prey) evolved independently in two of the four stylonurine superfamilies, the Stylonuroidea and the Mycteropoidea. In both superfamilies, the adaptations to this lifestyle involves modifications to the spines on their anterior prosomal appendages for raking through the substrate of their habitats. Rhenopteroids, kokomopterids and parastylonurids retained primitive prosomal appendages II-IV that were unsuited for sweep-feeding and likely adopted scavenging, whilst the hardieopterids may have been benthic bottomdwellers living partially buried in the substrate. [3]

Stylonuroids have fixed spines on appendages II-IV which could have been used as dragnets to rake through the sediments and thus entangling anything in their way, whilst the mycteropoids, which have some of the most extreme adaptations, likely were more selective and specialized. Mycteropoids possess modified blades on their anterior prosomal appendages that feature sensory setae. The tactile function of these might have allowed mycteropoids to select prey from the sediments in a way that stylonuroids could not. [3]

Systematics

Restoration of Campylocephalus oculatus, a hibbertopterid. CampylocephalusDB117.jpg
Restoration of Campylocephalus oculatus , a hibbertopterid.

Historically, the phylogeny and systematics of the Stylonurina have been far less well understood and less resolved than that of the Eurypterina. Many historical analyses were limited in scope or resolution and the unique hibbertopterids have even on occasion been suggested to be a separate, but closely related, order to Eurypterida, but have lacked an analysis either proving or disproving such an idea. Lamsdell et al. (2011) performed the first major and comprehensive analysis of the suborder, which permitted a substantial systematic revision and comparisons to other eurypterid clades. [3]

Reconstruction of Brachyopterus, a rhenopterid and the earliest known stylonurine. Brachyopterus.png
Reconstruction of Brachyopterus , a rhenopterid and the earliest known stylonurine.

The phylogenetic analysis established that Stylonurina indeed was a monophyletic group composed of four clades: the Rhenopteroidea, Stylonuroidea, Kokomopteroidea and Mycteropoidea. These superfamilies in turn contain the following families (and one genus incertae sedis ): [3]

Suborder Stylonurina Diener, 1924

Kokomopterus, a kokomopterid. The Eurypterida of New York plate 54.jpg
Kokomopterus , a kokomopterid.

The cladogram presented below showcases the phylogeny of the Stylonurina as presented by Lamsdell et al. (2010). [3] Alkenopterus (here shown as a rhenopterid) has since been reclassified as a basal eurypterine. [5]

Stylonurina

See also

Related Research Articles

<span class="mw-page-title-main">Eurypterid</span> Order of arthropods (fossil)

Eurypterids, often informally called sea scorpions, are a group of extinct arthropods that form the order Eurypterida. The earliest known eurypterids date to the Darriwilian stage of the Ordovician period 467.3 million years ago. The group is likely to have appeared first either during the Early Ordovician or Late Cambrian period. With approximately 250 species, the Eurypterida is the most diverse Paleozoic chelicerate order. Following their appearance during the Ordovician, eurypterids became major components of marine faunas during the Silurian, from which the majority of eurypterid species have been described. The Silurian genus Eurypterus accounts for more than 90% of all known eurypterid specimens. Though the group continued to diversify during the subsequent Devonian period, the eurypterids were heavily affected by the Late Devonian extinction event. They declined in numbers and diversity until becoming extinct during the Permian–Triassic extinction event 251.9 million years ago.

<i>Hibbertopterus</i> Extinct genus of arthropods

Hibbertopterus is a genus of eurypterid, a group of extinct aquatic arthropods. Fossils of Hibbertopterus have been discovered in deposits ranging from the Devonian period in Belgium, Scotland and the United States to the Carboniferous period in Scotland, Ireland, the Czech Republic and South Africa. The type species, H. scouleri, was first named as a species of the significantly different Eurypterus by Samuel Hibbert in 1836. The generic name Hibbertopterus, coined more than a century later, combines his name and the Greek word πτερόν (pteron) meaning "wing".

<i>Brachyopterus</i> Extinct genus of sea scorpions

Brachyopterus is a genus of prehistoric eurypterid of the family Rhenopteridae. It is one of the earliest known eurypterids, having been recovered from Middle Ordovician deposits in Montgomeryshire, Wales. Though other species have been assigned to it in the past, Brachyopterus is today recognized as containing one valid species, B. stubblefieldi.

<i>Drepanopterus</i> Extinct genus of sea scorpions

Drepanopterus is an extinct genus of eurypterid and the only member of the family Drepanopteridae within the Mycteropoidea superfamily. There are currently three species assigned to the genus. The genus has historically included more species, with nine species having been associated with the genus Drepanopterus. Five of these have since been proven to be synonyms of pre-existing species, assigned to their own genera, or found to be based on insubstantial fossil data. The holotype of one species proved to be a lithic clast.

<i>Campylocephalus</i> Extinct genus of arthropods

Campylocephalus is a genus of eurypterid, a group of extinct aquatic arthropods. Fossils of Campylocephalus have been discovered in deposits ranging from the Carboniferous period in the Czech Republic to the Permian period of Russia. The generic name is composed of the Greek words καμπύλος (kampýlos), meaning "curved", and κεφαλή (kephalē), meaning "head".

<i>Onychopterella</i> Extinct genus of arthropods

Onychopterella is a genus of predatory eurypterid, an extinct group of aquatic arthropods. Fossils of Onychopterella have been discovered in deposits from the Late Ordovician to the Late Silurian. The genus contains three species: O. kokomoensis, the type species, from the Early Pridoli epoch of Indiana; O. pumilus, from the Early Llandovery epoch of Illinois, both from the United States; and O. augusti, from the Late Hirnantian to Early Rhuddanian stages of South Africa.

<i>Parahughmilleria</i> Extinct genus of arthropods

Parahughmilleria is a genus of eurypterid, an extinct group of aquatic arthropods. Fossils of Parahughmilleria have been discovered in deposits of the Devonian and Silurian age in the United States, Canada, Russia, Germany, Luxembourg and Great Britain, and have been referred to several different species. The first fossils of Parahughmilleria, discovered in the Shawangunk Mountains in 1907, were initially assigned to Eurypterus. It would not be until 54 years later when Parahughmilleria would be described.

<span class="mw-page-title-main">Stylonuridae</span> Extinct family of arthropods

Stylonuridae is a family of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". The family is one of two families contained in the superfamily Stylonuroidea, which in turn is one of four superfamilies classified as part of the suborder Stylonurina.

<span class="mw-page-title-main">Rhenopteridae</span> Extinct family of arthropods

The Rhenopteridae are a family of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". The family is the only family currently contained in the superfamily Rhenopteroidea, one of four superfamilies classified as part of the suborder Stylonurina.

<span class="mw-page-title-main">Stylonuroidea</span> Extinct superfamily of arthropods

Stylonuroidea is an extinct superfamily of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". It is one of four superfamilies classified as part of the suborder Stylonurina.

<span class="mw-page-title-main">Parastylonuridae</span> Extinct family of arthropods

The Parastylonuridae are a family of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". The family is one of two families contained in the superfamily Stylonuroidea, which in turn is one of four superfamilies classified as part of the suborder Stylonurina.

<span class="mw-page-title-main">Kokomopteroidea</span> Extinct superfamily of arthropods

Kokomopteroidea is an extinct superfamily of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". It is one of four superfamilies classified as part of the suborder Stylonurina. Kokomopteroids have been recovered from deposits of Early Silurian to Late Devonian age in the United States and the United Kingdom.

<span class="mw-page-title-main">Kokomopteridae</span> Extinct family of arthropods

The Kokomopteridae are a family of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". The family is one of two families contained in the superfamily Kokomopteroidea, which in turn is one of four superfamilies classified as part of the suborder Stylonurina.

<span class="mw-page-title-main">Hardieopteridae</span> Extinct family of arthropods

The Hardieopteridae are a family of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". The family is one of two families contained in the superfamily Kokomopteroidea, which in turn is one of four superfamilies classified as part of the suborder Stylonurina. Hardieopterids have been recovered from deposits of Early Silurian to Late Devonian age in the United States and the United Kingdom.

<span class="mw-page-title-main">Hibbertopteridae</span> Extinct family of arthropods

Hibbertopteridae is a family of eurypterids, an extinct group of aquatic arthropods. They were members of the superfamily Mycteropoidea. Hibbertopterids were large, broad and heavy animals unlike virtually every other group of eurypterids, which are commonly streamlined and lightweight. Their bizarre morphology is so unusual that they in the past have been thought to represent an entirely distinct order of chelicerates. Fossils of the family first appear in deposits of Middle Devonian age and the last known fossils representing hibbertopterids are known from deposits of Late Permian age. The hibbertopterids represent the last known living eurypterids, going extinct during the Permian–Triassic extinction event or shortly before.

<span class="mw-page-title-main">Waeringopteridae</span> Extinct family of arthropods

Waeringopteridae is a family of eurypterids, an extinct group of aquatic arthropods. The Waeringopteridae is the only family classified as part of the superfamily Waeringopteroidea, which in turn is classified within the infraorder Diploperculata in the suborder Eurypterina. The earliest known member of the group, Orcanopterus, has been recovered from deposits of Katian age and the latest known surviving member, Grossopterus, has been recovered from deposits of Siegenian age. The name Waeringopteridae is derived from the type genus Waeringopterus, which is named in honor of eurypterid researcher Erik N. Kjellesvig-Waering.

<span class="mw-page-title-main">Adelophthalmidae</span> Family of eurypterids

Adelophthalmidae is a family of eurypterids, an extinct group of aquatic arthropods. Adelophthalmidae is the only family classified as part of the superfamily Adelophthalmoidea, which in turn is classified within the infraorder Diploperculata in the suborder Eurypterina.

<span class="mw-page-title-main">Eurypterina</span> Suborder of eurypterid

Eurypterina is one of two suborders of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". Eurypterine eurypterids are sometimes informally known as "swimming eurypterids". They are known from fossil deposits worldwide, though primarily in North America and Europe.

<span class="mw-page-title-main">Mycteropoidea</span> Extinct superfamily of arthropods

Mycteropoidea is an extinct superfamily of eurypterids, an extinct group of chelicerate arthropods commonly known as "sea scorpions". It is one of four superfamilies classified as part of the suborder Stylonurina. Mycteropoids have been recovered from Europe, Russia, South America and South Africa. Mycteropoid specimens are often fragmentary, making it difficult to establish relationships between the included taxa. Only two mycteropoid taxa are known from reasonable complete remains, Hibbertopterus scouleri and H. wittebergensis.

<i>Vernonopterus</i> Extinct genus of arthropods

Vernonopterus is a genus of eurypterid, a group of extinct aquatic arthropods. Fossils of Vernonopterus have been discovered in deposits of the Carboniferous period in Scotland. The name of the genus derives from the location where the only known fossil has been discovered, Mount Vernon near Airdrie in Lanarkshire, Scotland. A single species of Vernonopterus is recognized, V. minutisculptus, based on fragmentary fossilized tergites, segments on the upper side of the abdomen. The species name minutisculptus refers to the ornamentation of scales that covers the entirety of the preserved parts of the eurypterid.

References

  1. James Lamsdell. "Systematic list of known eurypterid species". eurypterids.co.uk. Archived from the original on August 15, 2011. Retrieved January 13, 2011.
  2. "Fossilworks: Stylonurina". fossilworks.org. Retrieved 2017-10-03.
  3. 1 2 3 4 5 6 7 8 9 10 James C. Lamsdell, Simon J. Braddy & O. Erik Tetlie (2010). "The systematics and phylogeny of the Stylonurina (Arthropoda: Chelicerata: Eurypterida)". Journal of Systematic Palaeontology . 8 (1): 49–61. doi: 10.1080/14772011003603564 . S2CID   85398946.
  4. Tetlie, O. E. (2008). "Hallipterus excelsior, a Stylonurid (Chelicerata: Eurypterida) from the Late Devonian Catskill Delta Complex, and Its Phylogenetic Position in the Hardieopteridae". Bulletin of the Peabody Museum of Natural History. 49: 19–99. doi:10.3374/0079-032X(2008)49[19:HEASCE]2.0.CO;2.
  5. Dunlop, J. A., Penney, D. & Jekel, D. 2015. A summary list of fossil spiders and their relatives. In World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch , version 16.0 http://www.wsc.nmbe.ch/resources/fossils/Fossils16.0.pdf (PDF).