Thorotrast

Last updated
Thorium dioxide Fluorite-unit-cell-3D-ionic.png
Thorium dioxide
Thorotrast bottle Thorotrast.jpg
Thorotrast bottle

Thorotrast is a suspension containing particles of the radioactive compound thorium dioxide, ThO2; it was used as a radiocontrast agent in clinical radiography in the 1930s to 1950s. It is no longer used clinically.

Contents

Thorium compounds produce excellent images because of thorium's high opacity to X-rays (it has a high cross section for absorption). However, thorium is retained in the body, and it is radioactive, emitting harmful alpha radiation as it decays. Because the suspension offered high image quality and had virtually no immediate side-effects compared to the alternatives available at the time, Thorotrast became widely used after its introduction in 1931. António Egas Moniz contributed to its development. [1] About 2 to 10 million patients worldwide have been treated with Thorotrast. However, today it has shown an increase risk in certain cancers such as cholangiocarcinomas, angiosarcomas, hepatocellular carcinoma and hepatic fibrosis of the liver.

Safety

Even at the time of introduction, there was concern about the safety of Thorotrast. Following injection, the drug is distributed to the liver, spleen, lymph nodes, and bone, where it is absorbed. After this initial absorption, redistribution takes place at a very slow pace. Specifically, the biological half-life is estimated to be 22 years. [2] This means that the organs of patients who have been given Thorotrast will be exposed to internal alpha radiation for the rest of their lives. The significance of this long-term exposure was not fully understood at the time of Thorotrast's introduction in 1931.[ citation needed ]

Thorotrast was used in Portugal from 1930 to 1955. Epidemiological studies from Portugal showed a link between Thorotrast use and risk of developing leukaemia was significant and went so far as describing it as the most potent leukaemogen reported. They also noted very high levels of haemangioendotheliomas normally of the liver and they were very rarely seen in controls. [3]

Due to the release of alpha particles, Thorotrast was found to be extremely carcinogenic. There is a high over-incidence of various cancers in patients who have been treated with Thorotrast. The cancers occur some years (usually 20–30) after injection of Thorotrast. The risk of developing liver cancer (or bile duct cancer) in former Thorotrast patients has been measured to be well above 100 times the risk of the rest of the population. The risk of leukemia appears to be 20 times higher in Thorotrast patients. [4] Thorotrast exposure has also been associated with the development of angiosarcoma. German patients exposed to Thorotrast had their median life-expectancy shortened by 14 years in comparison to a similar non-exposed control group. [5]

Thorium is no longer used in X-ray contrast agents for clinical use. Today, iodinated hydrophilic (water-soluble) molecules are universally used as injected contrast agents in clinical X-ray procedures.[ citation needed ]

The Danish director Nils Malmros's movie, Facing the Truth (original Danish title At Kende Sandheden) from 2002, portrays the dilemma that faced Malmros's father, Richard Malmros, when treating his patients in the 1940s. Richard Malmros was deeply concerned about the persistence of Thorotrast in the body but was forced to use Thorotrast, because the only available alternative (per-abrodil) had serious immediate side-effects, suffered from image quality problems and was difficult to obtain during the Second World War. The use of Thorotrast in Denmark ended in 1947 when safer alternatives became available.[ citation needed ]

Current use

In the decades after the cessation of its clinical use, Thorotrast has sometimes been used in laboratory research to stain neural tissue samples for examination by historadiography. [6]

Related Research Articles

<span class="mw-page-title-main">Radiation therapy</span> Therapy using ionizing radiation, usually to treat cancer

Radiation therapy or radiotherapy, often abbreviated RT, RTx, or XRT, is a therapy using ionizing radiation, generally provided as part of cancer treatment to control or kill malignant cells and normally delivered by a linear accelerator. Radiation therapy may be curative in a number of types of cancer if they are localized to one area of the body. It may also be used as part of adjuvant therapy, to prevent tumor recurrence after surgery to remove a primary malignant tumor. Radiation therapy is synergistic with chemotherapy, and has been used before, during, and after chemotherapy in susceptible cancers. The subspecialty of oncology concerned with radiotherapy is called radiation oncology. A physician who practices in this subspecialty is a radiation oncologist.

Ionizing radiation, including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Hepatocellular carcinoma</span> Medical condition

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and is currently the most common cause of death in people with cirrhosis. HCC is the third leading cause of cancer-related deaths worldwide.

Radionuclide therapy uses radioactive substances called radiopharmaceuticals to treat medical conditions, particularly cancer. These are introduced into the body by various means and localise to specific locations, organs or tissues depending on their properties and administration routes. This includes anything from a simple compound such as sodium iodide that locates to the thyroid via trapping the iodide ion, to complex biopharmaceuticals such as recombinant antibodies which are attached to radionuclides and seek out specific antigens on cell surfaces.

<span class="mw-page-title-main">Nuclear medicine</span> Medical specialty

Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is "radiology done inside out" because it records radiation emitting from within the body rather than radiation that is generated by external sources like X-rays. In addition, nuclear medicine scans differ from radiology, as the emphasis is not on imaging anatomy, but on the function. For such reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine.

<span class="mw-page-title-main">António Egas Moniz</span> Portuguese neurologist (1874–1955)

António Caetano de Abreu Freire Egas Moniz, known as Egas Moniz, was a Portuguese neurologist and the developer of cerebral angiography. He is regarded as one of the founders of modern psychosurgery, having developed the surgical procedure leucotomy—​better known today as lobotomy—​for which he became the first Portuguese national to receive a Nobel Prize in 1949.

<span class="mw-page-title-main">Thorium dioxide</span> Chemical compound

Thorium dioxide (ThO2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in colour. Also known as thoria, it is produced mainly as a by-product of lanthanide and uranium production. Thorianite is the name of the mineralogical form of thorium dioxide. It is moderately rare and crystallizes in an isometric system. The melting point of thorium oxide is 3300 °C – the highest of all known oxides. Only a few elements (including tungsten and carbon) and a few compounds (including tantalum carbide) have higher melting points. All thorium compounds, including the dioxide, are radioactive because there are no stable isotopes of thorium.

Radiocontrast agents are substances used to enhance the visibility of internal structures in X-ray-based imaging techniques such as computed tomography, projectional radiography, and fluoroscopy. Radiocontrast agents are typically iodine, or more rarely barium sulfate. The contrast agents absorb external X-rays, resulting in decreased exposure on the X-ray detector. This is different from radiopharmaceuticals used in nuclear medicine which emit radiation.

<span class="mw-page-title-main">Cholangiocarcinoma</span> Bile duct adenocarcinoma

Cholangiocarcinoma, also known as bile duct cancer, is a type of cancer that forms in the bile ducts. Symptoms of cholangiocarcinoma may include abdominal pain, yellowish skin, weight loss, generalized itching, and fever. Light colored stool or dark urine may also occur. Other biliary tract cancers include gallbladder cancer and cancer of the ampulla of Vater.

<span class="mw-page-title-main">Angiosarcoma</span> Cancer of the lining of the blood or lymphatic vessels

Angiosarcoma is a rare and aggressive cancer that starts in the endothelial cells that line the walls of blood vessels or lymphatic vessels. Since they are made from vascular lining, they can appear anywhere and at any age, but older people are more commonly affected, and the skin is the most affected area, with approximately 60% of cases being cutaneous. Specifically, the scalp makes up ~50% of angiosarcoma cases, but this is still <0.1% of all head and neck tumors. Since angiosarcoma is an umbrella term for many types of tumor that vary greatly in origin and location, many symptoms may occur, from completely asymptomatic to non-specific symptoms like skin lesions, ulceration, shortness of breath and abdominal pain. Multiple-organ involvement at time of diagnosis is common and makes it difficult to ascertain origin and how to treat it.

Iodine-131 is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production. It also plays a major role as a radioactive isotope present in nuclear fission products, and was a significant contributor to the health hazards from open-air atomic bomb testing in the 1950s, and from the Chernobyl disaster, as well as being a large fraction of the contamination hazard in the first weeks in the Fukushima nuclear crisis. This is because 131I is a major fission product of uranium and plutonium, comprising nearly 3% of the total products of fission. See fission product yield for a comparison with other radioactive fission products. 131I is also a major fission product of uranium-233, produced from thorium.

<span class="mw-page-title-main">Actinides in the environment</span>

Environmental radioactivity is not limited to actinides; non-actinides such as radon and radium are of note. While all actinides are radioactive, there are a lot of actinides or actinide-relating minerals in the Earth's crust such as uranium and thorium. These minerals are helpful in many ways, such as carbon-dating, most detectors, X-rays, and more.

<i>Facing the Truth</i> (film) 2002 film

Facing the Truth is a 2002 Danish drama written and directed by Nils Malmros. Shot in black-and-white documentary style, and based on the real life of Malmros' father, the film relates the hardships of a young neurosurgeon struggling through a medical lawsuit. Malmros, whose films are known for their realism, is educated as a surgeon and performed all the film's brain surgery scenes. The film was nominated for the 2003 Bodil Award for Best Danish Film and won the 2003 Danish Film Academy's Robert Award for Film of the Year.

<span class="mw-page-title-main">Liver cancer</span> Medical condition

Liver cancer is cancer that starts in the liver. Liver cancer can be primary or secondary. Liver metastasis is more common than that which starts in the liver. Liver cancer is increasing globally.

Radiobiology is a field of clinical and basic medical sciences that involves the study of the action of ionizing radiation on living things, especially health effects of radiation. Ionizing radiation is generally harmful and potentially lethal to living things but can have health benefits in radiation therapy for the treatment of cancer and thyrotoxicosis. Its most common impact is the induction of cancer with a latent period of years or decades after exposure. High doses can cause visually dramatic radiation burns, and/or rapid fatality through acute radiation syndrome. Controlled doses are used for medical imaging and radiotherapy.

<span class="mw-page-title-main">Selective internal radiation therapy</span>

Selective internal radiation therapy (SIRT), also known as transarterial radioembolization (TARE), radioembolization or intra-arterial microbrachytherapy is a form of radiation therapy used in interventional radiology to treat cancer. It is generally for selected patients with surgically unresectable cancers, especially hepatocellular carcinoma or metastasis to the liver. The treatment involves injecting tiny microspheres of radioactive material into the arteries that supply the tumor, where the spheres lodge in the small vessels of the tumor. Because this treatment combines radiotherapy with embolization, it is also called radioembolization. The chemotherapeutic analogue is called chemoembolization, of which transcatheter arterial chemoembolization (TACE) is the usual form.

<span class="mw-page-title-main">Alpha particle</span> Helium-4 nucleus; particle of two protons and two neutrons

Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+
or 4
2
He2+
indicating a helium ion with a +2 charge. Once the ion gains electrons from its environment, the alpha particle becomes a normal helium atom 4
2
He
.

<span class="mw-page-title-main">Neutron capture therapy of cancer</span> Nonsurgical therapeutic modality for treating locally invasive malignant tumors

Neutron capture therapy (NCT) is a type of radiotherapy for treating locally invasive malignant tumors such as primary brain tumors, recurrent cancers of the head and neck region, and cutaneous and extracutaneous melanomas. It is a two-step process: first, the patient is injected with a tumor-localizing drug containing the stable isotope boron-10 (10B), which has a high propensity to capture low energy "thermal" neutrons. The neutron cross section of 10B is 1,000 times more than that of other elements, such as nitrogen, hydrogen, or oxygen, that occur in tissue. In the second step, the patient is radiated with epithermal neutrons, the sources of which in the past have been nuclear reactors and now are accelerators that produce higher energy epithermal neutrons. After losing energy as they penetrate tissue, the resultant low energy "thermal" neutrons are captured by the 10B atoms. The resulting decay reaction yields high-energy alpha particles that kill the cancer cells that have taken up enough 10B.

<span class="mw-page-title-main">Radiation exposure</span> Measure of ionization of air by ionizing radiation

Radiation exposure is a measure of the ionization of air due to ionizing radiation from photons. It is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air. As of 2007, "medical radiation exposure" was defined by the International Commission on Radiological Protection as exposure incurred by people as part of their own medical or dental diagnosis or treatment; by persons, other than those occupationally exposed, knowingly, while voluntarily helping in the support and comfort of patients; and by volunteers in a programme of biomedical research involving their exposure. Common medical tests and treatments involving radiation include X-rays, CT scans, mammography, lung ventilation and perfusion scans, bone scans, cardiac perfusion scan, angiography, radiation therapy, and more. Each type of test carries its own amount of radiation exposure. There are two general categories of adverse health effects caused by radiation exposure: deterministic effects and stochastic effects. Deterministic effects are due to the killing/malfunction of cells following high doses; and stochastic effects involve either cancer development in exposed individuals caused by mutation of somatic cells, or heritable disease in their offspring from mutation of reproductive (germ) cells.

<span class="mw-page-title-main">Liver angiosarcoma</span> Medical condition

Liver angiosarcoma also known as angiosarcoma of the liver or hepatic angiosarcoma is a rare and rapidly fatal cancer arising from endothelial that line the blood vessels of the liver. It is a type of angiosarcoma. Although very rare with around 200 cases diagnosed each year, it is still considered the third most common primary liver cancer, making up around 2% of all primary liver cancers. Liver angiosarcoma can be primary, meaning it arose in the liver, or secondary, meaning the angiosarcoma arose elsewhere and metastasized to the liver. This article covers PHA, however much is also applicable to secondary tumors.

References

  1. Tondreau, R. (1985). "Egas Moniz 1874–1955". Radiographics. 5 (6): 994–997. doi:10.1148/radiographics.5.6.3916824. PMID   3916824.
  2. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-16. Retrieved 2007-01-25.{{cite web}}: CS1 maint: archived copy as title (link)
  3. Silva Horta, J.; Abbatt, John D.; Motta, L. Cayolla; Tavares, M. Helena (July 1972). "Leukaemia, malignancies and other late effects following administration of Thorotrast". Zeitschrift für Krebsforschung und Klinische Onkologie. 77 (3): 202–216. doi:10.1007/BF02570686. ISSN   0084-5353. PMID   4262174. S2CID   29239672.
  4. Kaick, Gerhard van; Andreas Dalheimer; Sakiko Hornik; Alexander Kaul; Dagmar Liebermann; Hertha Lührs; Andreas Spiethoff; Kurt Wegener; H. Wesch (1999-12-01). "The German Thorotrast Study: Recent Results and Assessment of Risks". Radiation Research . 152 (6): S64–S71. Bibcode:1999RadR..152S..64V. doi:10.2307/3580117. ISSN   0033-7587. JSTOR   3580117. PMID   10564940.
  5. Becker, N; D Liebermann; H Wesch; G Vankaick (June 2008). "Mortality among Thorotrast-exposed patients and an unexposed comparison group in the German Thorotrast study". European Journal of Cancer . 44 (9): 1259–1268. doi:10.1016/j.ejca.2008.02.050. ISSN   0959-8049. PMID   18395438. Archived from the original on 2016-03-04. Retrieved 2011-04-30.
  6. Bohatirchuk, F. P.; Jeletzky, T. F.; Ivan, L. P. (August 1973). "Contact historadiography of nervous tissue impregnated with thorotrast". Am J Roentgenol Radium Ther Nucl Med. 118 (4): 923–6. doi:10.2214/ajr.118.4.923. PMID   4593184.