Twin-turbo

Last updated

Twin-turbo (not to be confused with a twincharger setup, which is a combination of a supercharger and a turbocharger) refers to an engine in which two turbochargers work in tandem to compress the intake fuel/air mixture (or intake air, in the case of a direct-injection engine). The most common layout features two identical or mirrored turbochargers in parallel, each processing half of a V engine's produced exhaust through independent piping. The two turbochargers can either be matching or different sizes.

Contents

Types and combinations

There are three types of turbine setups used for twin-turbo setups:

These can be applied to any of the five types of compressor setups (which theoretically could have 15 different setups):

Parallel

Twin Turbo 454 (7825583788).jpg
Chevrolet big-block V8 engine with parallel twin-turbos
Porsche 935 twin turbo (6293639098).jpg
Porsche 935 flat-six engine with parallel twin-turbos

A parallel configuration refers to using two equally-sized turbochargers which each receive half of the exhaust gases. [2] Some designs combine the intake charge from each turbocharger into a single intake manifold, while others use a separate intake manifold for each turbocharger.

Parallel configurations are well suited to V6 and V8 engines since each turbocharger can be assigned to one cylinder bank, reducing the amount of exhaust piping needed. In this case, each turbocharger is fed exhaust gases by a separate exhaust manifold. For four-cylinder engines and straight-six engines, both turbochargers can be mounted to a single exhaust manifold.

The aim of using parallel twin-turbos is to reduce turbo lag by being able to use smaller turbochargers than if a single turbocharger was used for the engine. On engines with multiple cylinder banks (e.g. V engines and flat engines) use of parallel twin-turbos can also simplify the exhaust system.

The 1981-1994 Maserati Biturbo was the first production car to use twin-turbochargers. [3]

Sequential

Sequential turbocharging refer to a set-up in which the engine uses one turbocharger for lower engine speeds, and a second or both turbochargers at higher engine speeds. This system is intended to overcome the limitation of large turbochargers providing insufficient boost at low RPM. On the other hand, smaller turbos are effective at low RPM (when there is less kinetic energy present in the exhaust gases) but are unable to provide the quantity of compressed intake gases required at higher RPM. Therefore, sequential turbocharger systems provide a way to decrease turbo lag without compromising power output at high RPM. [4]

The system is arranged so that a small ("primary") turbocharger is active while the engine is operating at low RPM, which reduces the boost threshold (RPM at which effective boost is provided) and turbo lag. As RPM increases, a small amount of exhaust gas is fed to the larger ("secondary") turbocharger, to bring it up to operating speed. Then at high RPM, all of the exhaust gases are directed to the secondary turbocharger, so that it can provide the boost required by the engine at high RPM. [5]

The first production car to use sequential turbocharging was the 1986-1988 Porsche 959, which used sequential twin-turbos on its flat-six engine. [6] [7]

Supra MKIV turbosystem 002 first turbo.gif
Supra MKIV turbosystem 003 prespooling.gif
Supra MKIV turbosystem 005 twinturbo.gif
Sequential turbo operation: primary turbo at low RPM (left), pre-spooling secondary turbo (centre), secondary turbo operation (right)

Series

Serial turbocharging is where the turbochargers are connected in series with the output of the first turbocharger then being further compressed by the second turbocharger and in some cases powering the larger turbine.

A sequential turbo can also be of use to a system where the output pressure must be greater than can be provided by a single turbo, commonly called a compound twin-turbo system. In this case, multiple similarly sized turbochargers are used in sequence, but constantly operating. The first turbo boosts provides the initial compression (for example to three times the intake pressure). Subsequent turbos take the charge from the previous stage and compress it further (for example to an additional three times intake pressure, for a total boost of nine times atmospheric pressure).

A downside of staged turbocharging is that it often leads to large amounts of turbo lag, [8] therefore it is mostly used on piston engine aircraft which usually do not need to rapidly raise and lower engine speed. (and thus where turbo lag is not a primary design consideration), and where the intake pressure is quite low due to low atmospheric pressure at altitude, requiring a very high pressure ratio. High-performance diesel engines also sometimes use this configuration, [9] since diesel engines do not suffer from pre-ignition issues and can therefore use high boost pressures.

Series Compound Twin Turbo Diagram Series compound twin turbo.jpg
Series Compound Twin Turbo Diagram
Series Staged Compound Twin Turbo Diagram Staged Compound twin turbo.jpg
Series Staged Compound Twin Turbo Diagram

See also

Related Research Articles

<span class="mw-page-title-main">Turbocharger</span> Exhaust-powered forced-induction device for engines

In an internal combustion engine, a turbocharger is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake air, forcing more air into the engine in order to produce more power for a given displacement.

<span class="mw-page-title-main">Miller cycle</span> Thermodynamic cycle

In engineering, the Miller cycle is a thermodynamic cycle used in a type of internal combustion engine. The Miller cycle was patented by Ralph Miller, an American engineer, U.S. Patent 2,817,322 dated Dec 24, 1957. The engine may be two- or four-stroke and may be run on diesel fuel, gases, or dual fuel. It uses a supercharger to offset the performance loss of the Atkinson cycle.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.
<span class="mw-page-title-main">Intercooler</span> Heat exchanger used to cool a gas after compression

An intercooler is a heat exchanger used to cool a gas after compression. Often found in turbocharged engines, intercoolers are also used in air compressors, air conditioners, refrigeration and gas turbines.

<span class="mw-page-title-main">Roots blower</span> A positive displacement lobe pump

The Roots blower is a positive displacement lobe pump which operates by pumping a fluid with a pair of meshing lobes resembling a set of stretched gears. Fluid is trapped in pockets surrounding the lobes and carried from the intake side to the exhaust.

<span class="mw-page-title-main">Naturally aspirated engine</span> Type of internal combustion engine

A naturally aspirated engine, also known as a normally aspirated engine, and abbreviated to N/A or NA, is an internal combustion engine in which air intake depends solely on atmospheric pressure and does not have forced induction through a turbocharger or a supercharger.

<span class="mw-page-title-main">Forced induction</span> Concept in engine design

In an internal combustion engine, forced induction is where turbocharging or supercharging is used to increase the density of the intake air. Engines without forced induction are classified as naturally aspirated.

<span class="mw-page-title-main">Blowoff valve</span> A pressure release system in turbocharged engines

A blowoff valve is a pressure release system present in most petrol turbocharged engines. Blowoff valves are used to reduce pressure in the intake system as the throttle is closed, thus preventing compressor surge.

<span class="mw-page-title-main">Engine braking</span> Retarding forces within an engine used to slow a vehicle

Engine braking occurs when the retarding forces within an internal combustion engine are used to slow down a motor vehicle, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes.

<span class="mw-page-title-main">Toyota JZ engine</span> Reciprocating internal combustion engine

The Toyota JZ engine family is a series of inline-6 automobile engines produced by Toyota Motor Corporation. As a replacement for the M-series inline-6 engines, the JZ engines were 24-valve DOHC engines in 2.5- and 3.0-litre versions.

A wastegate is a valve that controls the flow of exhaust gases to the turbine wheel in a turbocharged engine system.

The anti-lag system (ALS) is a method of reducing turbo lag or effective compression used on turbocharged engines to minimize turbo lag on racing or performance cars. It works by delaying the ignition timing and adding extra fuel to balance an inherent loss in combustion efficiency with increased pressure at the charging side of the turbo. This is achieved as an excess amount of fuel/air mixture escapes through the exhaust valves and combusts in the hot exhaust manifold spooling the turbocharger creating higher usable pressure.

<span class="mw-page-title-main">Variable-geometry turbocharger</span> Type of turbocharging technology

Variable-geometry turbochargers (VGTs), occasionally known as variable-nozzle turbochargers (VNTs), are a type of turbochargers, usually designed to allow the effective aspect ratio of the turbocharger to be altered as conditions change. This is done with the use of adjustable vanes located inside the turbine housing between the inlet and turbine, these vanes affect flow of gases towards the turbine. The benefit of the VGT is that the optimum aspect ratio at low engine speeds is very different from that at high engine speeds.

A twincharger refers to a compound forced induction system used on some internal combustion engines. It is a combination of an exhaust-driven turbocharger and a mechanically driven supercharger, each mitigating the weaknesses of the other.

In turbocharged internal combustion engines, a boost controller is a device sometimes used to increase the boost pressure produced by the turbocharger. It achieves this by reducing the boost pressure seen by the wastegate.

<span class="mw-page-title-main">Turbo-diesel</span> Diesel engine with a turbocharger

The term turbo-diesel, also written as turbodiesel and turbo diesel, refers to any diesel engine equipped with a turbocharger. As with other engine types, turbocharging a diesel engine can significantly increase its efficiency and power output, especially when used in combination with an intercooler.

<span class="mw-page-title-main">Supercharger</span> Air compressor for an internal combustion engine

In an internal combustion engine, a supercharger compresses the intake gas, forcing more air into the engine in order to produce more power for a given displacement.

<span class="mw-page-title-main">Subaru Legacy (third generation)</span> Motor vehicle

Subaru launched the third generation Japanese and world-market Legacy in June 1998, while the North American model was introduced in May 1999 for the 2000 model year. In all markets except for the United States, production lasted through 2002, with a limited production Blitzen model sold mid-cycle under the 2003 model year in Japan. Production in the United States lasted through 2004.

An electric supercharger is a specific type of supercharger for internal combustion engines that uses an electrically powered forced-air system that contains an electric motor to pressurize the intake air. By pressurizing the air available to the engine intake system, the air becomes more dense, and is matched with more fuel, producing the increased horsepower to the wheels.

Turbochargers have been used on various petrol engines since 1962, in order to obtain greater power or torque output for a given engine displacement.

References

  1. "Toyota Supra MKIV : Types of Twin Turbo Setups". mkiv.supras.org.nz. Retrieved 2021-01-17.
  2. "Twin-Turbocharging: How Does It Work?". www.carthrottle.com. Retrieved 4 October 2019.
  3. "Biturbo". www.maserati.com. Retrieved 5 October 2019.
  4. Köhler, Mario (2017). "Volume 17". Turbochargers in the workshop technology, variants, troubleshooting. Krafthand Medien GmbH (1st ed.). p. 26. ISBN   978-3-87441-158-5. OCLC   1014188198.
  5. "1997 Toyota Supra - Prime Sequence". SuperStreetOnline. 27 May 2010. Retrieved 6 October 2019.
  6. "Video - The Porsche 959 is a $1.5 Million Automotive Icon". www.autotrader.com. Retrieved 6 October 2019.
  7. "Kimble Cutaway: Porsche 959". www.motor1.com. Retrieved 6 October 2019.
  8. "Twin-Turbocharging: How Does It Work?". www.carthrottle.com. Retrieved 8 October 2019.
  9. "Two Stage Serial Turbochargers for Diesel Engines". www.garrettmotion.com. Retrieved 8 October 2019.

http://mkiv.supras.org.nz/articles/twinturbosetups.htm