Von Neumann's theorem

Last updated

In mathematics, von Neumann's theorem is a result in the operator theory of linear operators on Hilbert spaces.

Statement of the theorem

Let and be Hilbert spaces, and let be an unbounded operator from into Suppose that is a closed operator and that is densely defined, that is, is dense in Let denote the adjoint of Then is also densely defined, and it is self-adjoint. That is,

and the operators on the right- and left-hand sides have the same dense domain in [1]

Related Research Articles

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : HH that commutes with its Hermitian adjoint N*, that is: NN* = N*N.

In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.

In functional analysis and related areas of mathematics, the group algebra is any of various constructions to assign to a locally compact group an operator algebra, such that representations of the algebra are related to representations of the group. As such, they are similar to the group ring associated to a discrete group.

In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule

In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function ss2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential

In functional analysis, the Friedrichs extension is a canonical self-adjoint extension of a non-negative densely defined symmetric operator. It is named after the mathematician Kurt Friedrichs. This extension is particularly useful in situations where an operator may fail to be essentially self-adjoint or whose essential self-adjointness is difficult to show.

In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space and one-parameter families

In mathematics and functional analysis, a direct integral or Hilbert integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings.

In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases.

In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.

In the theory of von Neumann algebras, a part of the mathematical field of functional analysis, Tomita–Takesaki theory is a method for constructing modular automorphisms of von Neumann algebras from the polar decomposition of a certain involution. It is essential for the theory of type III factors, and has led to a good structure theory for these previously intractable objects.

In mathematics, affiliated operators were introduced by Murray and von Neumann in the theory of von Neumann algebras as a technique for using unbounded operators to study modules generated by a single vector. Later Atiyah and Singer showed that index theorems for elliptic operators on closed manifolds with infinite fundamental group could naturally be phrased in terms of unbounded operators affiliated with the von Neumann algebra of the group. Algebraic properties of affiliated operators have proved important in L2 cohomology, an area between analysis and geometry that evolved from the study of such index theorems.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In functional analysis, one is interested in extensions of symmetric operators acting on a Hilbert space. Of particular importance is the existence, and sometimes explicit constructions, of self-adjoint extensions. This problem arises, for example, when one needs to specify domains of self-adjointness for formal expressions of observables in quantum mechanics. Other applications of solutions to this problem can be seen in various moment problems.

In mathematics – specifically, in operator theory – a densely defined operator or partially defined operator is a type of partially defined function. In a topological sense, it is a linear operator that is defined "almost everywhere". Densely defined operators often arise in functional analysis as operations that one would like to apply to a larger class of objects than those for which they a priori "make sense".

In mathematics, a commutation theorem for traces explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

This is a glossary for the terminology in a mathematical field of functional analysis.

References

  1. Acuña, Pablo (2021). "von Neumann's Theorem Revisited" . Foundations of Physics. 51 (3): 73. doi:10.1007/s10701-021-00474-5. ISSN   0015-9018. S2CID   237887405.