Xylosandrus germanus

Last updated

Xylosandrus germanus
Black Stem Borer - Flickr - treegrow.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Coleoptera
Infraorder: Cucujiformia
Family: Curculionidae
Genus: Xylosandrus
Species:
X. germanus
Binomial name
Xylosandrus germanus
(Blandford, 1894)

Xylosandrus germanus, known generally as the alnus ambrosia beetle or black stem borer, is a species of ambrosia beetle in the family Curculionidae. [1] X. germanus poses challenges in woody ornamental species and orchard crops such as apples and pecan. Furthermore, X. germanus is recognized or suspected to act as a vector for plant pathogens to varying extents, potentially leading to the decline of trees. [2] The black stem borer is native to eastern Asia, but is an invasive species in Europe and North America. [3] This species carries and feeds on associated ambrosia fungus, Ambrosiella grosmanniae. [4] [5]

Contents

Physiology

Xylosandrus germanus are tiny insects, where females measure up to approximately 2 millimeters. [6] The adult female is typically 2.3 times as long as wide. On the other hand, males are rarely found outside of the gallery system. [7] The flightless X. germanus males are typically smaller than females and do not possess mycetangia. [8] Males measure up to only approximately 1.3 – 1.8 millimeters long, twice as wide as long.

The eggs of X. germanus are white, translucent, shiny, ellipsoidal, and measure up to about 0.67 mm long and 0.38 mm wide. [7]

Habitat

In contrast to other species within the Xyleborini tribe, such as Xylosandrus and related genera, X. germanus is found outside of the tropical zone. The distribution is limited to temperate climates, including both its native habitats and regions where it has been introduced. [7]

Brooding behavior

X. germanus targets an extensive range of host plants, including both deciduous and coniferous trees. X. germanus does not exhibit strong size selectivity, and it will reproduce in both small branches and large logs and stumps, with a potential preference for stems under 10 cm in diameter. However, it will attack any suitable woody plant stem. Because of the great range of host trees and differences across geographical regions, it is difficult to differentiate between 'primary host' and 'secondary host' trees. It can be anticipated that nearly any crop, plantation, or ornamental tree within a specific area is susceptible to attacks. [7]

The females excavate galleries consisting of entrance tunnels, brood chambers containing eggs and immature beetles, and branch tunnels where the young develop. These galleries are commonly found at the base of the trunk and can house dozens of beetles. This arrangement accommodates all life stages and developmental processes in the insect's life cycle. The larvae go through three instars, and the complete development from the egg to the adult stage takes approximately 30 days. [9]

These insects are known for boring into trees, especially those that are under distress. Trees provide protection for the beetle which ensures the progression of their life cycle. Throughout the winter months, beetles accumulate in tree trunk galleries for protection. [6] [10] Once the winter months pass, adults leave their galleries in search of new hosts. [10] The beetle's search is guided by the presence of ethanol, which is synthesized in larger quantities by dead or distressed woody material. [10] [11] Field research conducted in Slovakia suggests that cold winter temperatures have little impact on the persistence of X. germanus. [10]

Sex and reproduction

Female Xylosandrus germanus relies on emitting stress-induced volatiles, with ethanol being a key factor in locating appropriate hosts. [8] Xylosandrus germanus females lay eggs in the protective galleries of host plants, and many plants serve as viable media for these insects to lay their eggs. [6] [12] Common sawdust types that enable X. germanus reproduction include pear, oak, white ash, European buckthorn, and red maple. [12] Research suggests that offspring of this species hatch in a female-biased ratio, where this ratio can be influenced by the type of host species. The reproductive strategy of X. germanus follows a pattern of arrhenotoky, where only male offspring form from unfertilized eggs, and females or males can form from fertilized eggs. Given that females typically outsize males, X. germanus are also sexually dimorphic. Additionally, because of the close-quartered gallery space, inbreeding is common for this species. [12] In fact, mating between siblings inside the maternal galleries is predominant. [8]

Social behavior

X. germanus foundresses seem to have an initial brief period as they wait for the symbiotic fungus to establish. Once this occurs, oviposition starts, and their activity increases. Initially, Xylosandrus germanus foundresses engage in constructing the gallery and tending the fungal gardens and brood. Later in their lives, they transition to focusing mainly on blocking the gallery entrance. Blocking is deemed crucial for safeguarding broods from natural enemies and preventing the premature (and fatal) exit of larvae from the galleries. [2]

X. germanus larvae spend most of their time either eating food or being inactive. Additionally, the larvae exhibit various hygienic behaviors that presumably contribute to the maintenance of gallery health. Cleaning activities are common among larvae of many bark and ambrosia beetle species. Unless inactive, X. germanus larvae consistently use their mandibles to chew on various surfaces, including the fungal growth lining the gallery walls and their nest mates. Importantly, the larvae of X. germanus did not expand the gallery through their feeding activities. [2]

The social structure of X. germanus seems to involve a transition for the foundress from an initial emphasis on constructing the gallery, maintaining fungal gardens, and directly caring for the brood, to an indirect form of brood care through blocking the gallery and expelling frass. The offspring engage in hygiene-promoting behaviors. The frequency of these behaviors may vary depending on the life stage and the age of the gallery. [2]

Life cycle

The beetles have two to three generations per year in the United States, while they have one to two in Europe and Japan. Each female lays 2 to 54 eggs in the United States while producing 12 to 20 progenies in Germany. [13]

It was observed that by August 1, many of the galleries in the United States were either empty or contained a dead female, presumably a parent, in the gallery entryway. Adults overwinter often by clustering in galleries at the bases of trees. [13]

Symbiotic relationships

Research has tested that X. germanus takes advantage of the microbial volatile organic compounds (MVOCs) emitted by fungi in host selection. X. germanus was shown to have a strong preference for branch sections that are either pre-colonized by conspecifics or pre-inoculated with A. grosmanniae, their fungal mutualist. Besides, X. germanus was reported to be able to distinguish between volatiles emitted by various associated fungi, directing its selection based on different combinations of odorous sources. The research speculates that during tree infestation by X. germanus females, the generated or elicited MVOCs can be detected by other host-seeking females.  These females, recognizing suitable woody tissues, may consequently opt to colonize the same host site, excavating their galleries and forming aggregations. In this scenario, ethanol might serve as a long-range attractant for dispersing X. germanus females (i.e., those in flight), who could then utilize specific MVOCs for short-range orientation on the bolts. However, from an evolutionary perspective, it’s still unclear why MVOCs of fungal symbionts are used as cues for aggregation in beetles colonizing dead wood because bark beetles, in general, are known to be highly susceptible to intraspecific competition. Therefore, in theory, beetles would be expected to avoid breeding near others. [8]

Ambrosia beetles engage in fungal symbiosis with genera Ambrosiella and Raffaelea. [5] Beetles carry fungi into established galleries. The transport of the fungus is achieved through the mycangia of females, a carrying structure. [6] [5] X. germanus specifically engages in symbiosis with Ambrosiella grosmanniae. [5] The insect provides adequate substrate inside their galleries for fungal growth, while the mycelia of the fungus provides nutrition for the insect. Researchers have noticed that X. germanus solely appears to lay eggs succeeding the establishment of A. grosmanniae. This understanding has important implications for how this species may be managed as a pest.

For more information, see Pest management.

Wood pest

X. germanus adults infest trees that are under physiological stress, including those not exhibiting apparent symptoms. They utilize the trunks as locations for galleries, where they establish colonies and rear their brood. The adult female uses its mouthparts to tunnel into the heartwood and create galleries. The tree tissue, instead of being consumed as food, is expelled from the tunnel. This expelled material forms a column of compressed sawdust, resembling a toothpick that projects from the trunk. The beetle's attacks lead to the failure of the tree's conductive tissues, resulting in symptoms such as dieback, yellowed foliage, incomplete maturation of the fruit, and frequently, the death of the tree. [9]

Invasion

While males are flightless, females can disperse by flight over relatively long distances (at least 2 km). A few beetles can travel even further, especially when caught by wind currents. In the USA, X. germanus is spreading at a speed of several tens of kilometers per year. Human transport of infested wood is a cause of the long-distance spread. [7]

The introduction of a small number of female individuals could establish an active population if suitable host plants are available and environmental conditions are favorable. This is because sib-mating takes place in the gallery system before the emergence of the new generation of mated females. [7]

The black timber bark beetle Xylosandrus germanus is native to East Asia. It was first recorded in 1952 in German. In the last two decades of the 20th century, the species was also recorded in Austria, Belgium, France, Italy, Poland, and Switzerland. After the year 2000, X. germanus spread throughout Europe and is now present in Croatia, the Czech Republic, Denmark, Hungary, the Netherlands, Romania, the Russian Federation, Slovakia, Slovenia, Spain, Sweden, Turkey, the United Kingdom, and Ukraine. [14]

Economic damage was initially documented in 2016 when a significant quantity of timber, not removed from the forest immediately after logging, was infested by X. germanus. In North America, where it was introduced in 1932, X. germanus is recognized as one of the most economically significant pests in nurseries.  In Europe, it is generally viewed as a secondary pest. Nevertheless, in certain European regions, X. germanus has emerged as one of the prevalent scolytid species and is acknowledged for its potential impact on native scolytid communities. [14]

This species is highly polyphagous, with a host ranging over 200 plant species in 52 families. While it exhibits a preference for deciduous broadleaf trees and shrubs, it also attacks some conifers. In some introduced areas, such as the USA and Europe, its host range includes various plant species, including but not limited to Quercus, Fagus, Acer, Alnus, Betula, Buxus, Carpinus, Corylus, Juglans, Robinia, Ulmus, Picea, Pinus, Abies, etc. [15]

Many studies based in North America and Europe have declared the invasiveness of Xylosandrus germanus.

Alnus ambrosia beetle, Xylosandrus germanus Xylosandrus germanus (31299710464).jpg
Alnus ambrosia beetle, Xylosandrus germanus

European forests

Evidence for the invasion of X. germanus has been noted in Austria, the Czech Republic, Germany, Slovakia, Slovenia, and other countries in Europe. [10] [16] [14]

It is believed that X. germanus initially entered Europe through the transport of wood from Japan to Germany in the middle of the twentieth century. [17] Researchers now theorize that climate change and the global transport of lumber continues to bring X. germanus into new environments. The presence of X. germanus is generally inferred using ethanol traps, where the number of individuals trapped can be used to estimate species abundance. [16] [17] The invasion of X. germanus in Europe is detrimental to the logging industry, as downed trees inhabited by the pest lose value, or are rendered unsellable. [16]

Additionally, as in some European countries, monitoring programs utilizing ethanol-baited traps indicate that X. germanus has become a predominant ambrosia beetle species, regardless of the forest type. The discovery of the species at higher altitudes suggests the vertical expansion of the species in Europe, likely influenced by climate change. [14]

Slovakia

Researchers have data from their experiment conducted in western Slovakia spanning from 2010 to 2012 (Forest District Prievidza, Duchonka locality, 48°40´S, 18°05´V). In oak stands with an average age of 60–80 years, they deployed Lindgren funnel traps equipped with ethanol Ultra High Release (UHR) gelled lures, each weighing approximately 120 grams. Various studies affirm the high attractiveness of ethanol-based lures to ambrosia beetles, including X. germanus. In 2010, they captured 19 X. germanus imagoes, followed by 40 imagoes in 2011 and 77 imagoes in 2012, for a total of 136 imagoes over the three-year period. The results suggest that the observed increase in its occurrence during the study is likely not a random phenomenon. Based on existing literature and studies, researchers infer that the first instance of X. germanus in Slovakia was in 2010 during the experiment. However, researchers believe this species might have been present in the forests several years before our detection. [15]

New York apple orchards

Xylosandrus germanus invasions of New York apple orchards are detrimental to tree growth and health. [6] [9] Word of the damage reported in New York has also spread to Canada, where the Government of Ontario has warned orchards in the province of the damage caused by ambrosia beetles. Given this invasion, orchards are searching for optimal management strategies to reduce the economic impact of this pest.

Pest management

The persistence of X. germanus appears to be unimpacted by applying spray insecticides to the trunks of trees. [6] The trialing of insecticides on apple orchards in New York was suggestive of their inconsistency. [6] [5]

Given the ineffective nature, cost, and danger associated with using chemicals for pest management, researchers have begun to search for better ways to manage X. germanus. [18] It was found that fungi in genus Trichoderma could reduce the growth of A. grosmanniae, the symbiont of choice for X. germanus. [5] The hindered growth of A. grosmanniae ultimately causes X. germanus egg production to cease. Utilizing Trichoderma may be an adequate alternative to gain control of X. germanus damage and invasion.

Related Research Articles

<span class="mw-page-title-main">Curculionidae</span> Family of beetles

The Curculionidae are a family of weevils, commonly called snout beetles or true weevils. They are one of the largest animal families with 6,800 genera and 83,000 species described worldwide. They are the sister group to the family Brentidae.

Ambrosia beetles are beetles of the weevil subfamilies Scolytinae and Platypodinae, which live in nutritional symbiosis with ambrosia fungi. The beetles excavate tunnels in dead or stressed trees into which they introduce fungal gardens, their sole source of nutrition. After landing on a suitable tree, an ambrosia beetle excavates a tunnel in which it releases its fungal symbiont. The fungus penetrates the plant's xylem tissue, extracts nutrients from it, and concentrates the nutrients on and near the surface of the beetle gallery. Ambrosia fungi are typically poor wood degraders, and instead utilize less demanding nutrients. Symbiotic fungi produce and detoxify ethanol, which is an attractant for ambrosia beetles and likely prevents growth of antagonistic pathogens and selects for other beneficial symbionts. The majority of ambrosia beetles colonize xylem of recently dead trees, but some colonize stressed trees that are still alive, and a few species attack healthy trees. Species differ in their preference for different parts of trees, different stages of deterioration, and in the shape of their tunnels ("galleries"). However, the majority of ambrosia beetles are not specialized to any taxonomic group of hosts, unlike most phytophagous organisms including the closely related bark beetles. One species of ambrosia beetle, Austroplatypus incompertus exhibits eusociality, one of the few organisms outside of Hymenoptera and Isoptera to do so.

<span class="mw-page-title-main">Bark beetle</span> Subfamily of beetles

A bark beetle is the common name for the subfamily of beetles Scolytinae. Previously, this was considered a distinct family (Scolytidae), but is now understood to be a specialized clade of the "true weevil" family (Curculionidae). Although the term "bark beetle" refers to the fact that many species feed in the inner bark (phloem) layer of trees, the subfamily also has many species with other lifestyles, including some that bore into wood, feed in fruit and seeds, or tunnel into herbaceous plants. Well-known species are members of the type genus Scolytus, namely the European elm bark beetle S. multistriatus and the large elm bark beetle S. scolytus, which like the American elm bark beetle Hylurgopinus rufipes, transmit Dutch elm disease fungi (Ophiostoma). The mountain pine beetle Dendroctonus ponderosae, southern pine beetle Dendroctonus frontalis, and their near relatives are major pests of conifer forests in North America. A similarly aggressive species in Europe is the spruce ips Ips typographus. A tiny bark beetle, the coffee berry borer, Hypothenemus hampei is a major pest on coffee plantations around the world.

<span class="mw-page-title-main">Mycangium</span>

The term mycangium is used in biology for special structures on the body of an animal that are adapted for the transport of symbiotic fungi. This is seen in many xylophagous insects, which apparently derive much of their nutrition from the digestion of various fungi that are growing amidst the wood fibers. In some cases, as in ambrosia beetles, the fungi are the sole food, and the excavations in the wood are simply to make a suitable microenvironment for the fungus to grow. In other cases, wood tissue is the main food, and fungi weaken the defense response from the host plant.

<i>Xyleborus glabratus</i> Species of beetle

Xyleborus glabratus, the redbay ambrosia beetle, is a type of ambrosia beetle invasive in the United States. It has been documented as the primary vector of Raffaelea lauricola, the fungus that causes laurel wilt, a disease that can kill several North American tree species in the family Lauraceae, including redbay, sassafras, and avocado.

<i>Austroplatypus incompertus</i> Species of beetle

Austroplatypus incompertus, a type of ambrosia beetle, is endemic to Australia. They are found in the mesic forests, and subtropical and tropical ecosystems along the east coast of Australia. There are many unique characteristics attributable to the A. incompertus, like their gallery excavation in several Eucalyptus species, their obligate eusocial behavior, their relationship with fungi, and their unique sexual dimorphism. These beetles are one of the only insects that display obligate eusocial behavior. Additionally, their sexually dimorphic traits are of interest, since body size is reversed with males having smaller torsos than female a.incompertus beetles.

<span class="mw-page-title-main">European spruce bark beetle</span> Species of beetle

The European spruce bark beetle, is a species of beetle in the weevil subfamily Scolytinae, the bark beetles, and is found from Europe to Asia Minor and some parts of Africa.

<i>Euwallacea fornicatus</i> Species of beetle

Euwallacea fornicatus, also known as tea shot-hole borer, or polyphagous shot-hole borer (PSHB) is a species complex consisting of multiple cryptic species of ambrosia beetles known as an invasive species in California, Israel, South Africa, and Australia. The species has also been unintentionally introduced into exotic greenhouses in several European countries.

<i>Xylosandrus compactus</i> Species of beetle

Xylosandrus compactus is a species of ambrosia beetle. Common names for this beetle include black twig borer, black coffee borer, black coffee twig borer and tea stem borer. The adult beetle is dark brown or black and inconspicuous; it bores into a twig of a host plant and lays its eggs, and the larvae create further tunnels through the plant tissues. These beetles are agricultural pests that damage the shoots of such crops as coffee, tea, cocoa and avocado.

<i>Xylosandrus crassiusculus</i> Species of beetle

Xylosandrus crassiusculus, known generally as the Asian ambrosia beetle or granulate ambrosia beetle, is a species of tropical bark beetle in the family Curculionidae. It is native to Asia and has spread to Africa, Europe, Australasia and the Americas. The adult beetle is reddish-brown and some 2 to 3 mm long.

<i>Xyleborus affinis</i> Species of beetle

Xyleborus affinis, the sugarcane shot-hole borer, is a species of ambrosia beetle in the family Curculionidae. It is found on all continents with woodlands and is one of the most widespread ambrosia beetles internationally, primarily in areas with humid tropical climates like Florida. Like other ambrosia beetles, Xyleborus affinis is attracted to dead fallen logs in early stages of decay. Due to the presence of X. affinis on moist timber, this species is mistakenly believed to be the cause of tree death. However, there is insufficient evidence to support their presence as a causal factor. Rather, these beetles are believed to target and accelerate the decay process of trees that are already deteriorated and weak.

<i>Xyleborinus saxesenii</i> Species of beetle

Xyleborinus saxesenii, commonly known as the fruit-tree pinhole borer, is a species of ambrosia beetle in the family Curculionidae. It is native to the Palaearctic region but has been introduced in many locations, including North America. X. saxesenii typically live in freshly dead wood, but it has also been reported to attack live trees. Such attacks on live trees may lead to economic damage.

Euplatypus parallelus, previously known as Platypus parallelus, is a species of ambrosia beetle in the weevil family Curculionidae. The adults and larvae form galleries in various species of tree and logs. It is native to Central and South America but has spread globally, is present in Africa and is well established in tropical Asia.

<i>Cnestus mutilatus</i> Species of beetle

Cnestus mutilatus, commonly known as the camphor shot borer, camphor shoot borer, or sweetgum ambrosia beetle, is a species of ambrosia beetle in the subfamily Scolytinae of the weevil family Curculionidae. It is native to Asia, but has been established as an invasive species in the United States since 1999.

<i>Xyleborus dispar</i> Species of beetle

Xyleborus dispar is a species of bark beetle commonly called the Pear blight beetle, or the European shothole borer. It is an invasive species in North America, and can be a pest in orchards and forests throughout its range.

<i>Euwallacea interjectus</i> Species of beetle

Euwallacea interjectus is a species of ambrosia beetle in the species complex called Euwallacea fornicatus. It is native to Asia but has been introduced to the Western hemisphere over the last century.

<i>Xylosandrus morigerus</i> Species of beetle

Xylosandrus morigerus, is a species of weevil widespread throughout Afrotropical, Australian, Neotropical, Oceania and Oriental regions. It is also introduced to Palearctic regional countries.

Euwallacea perbrevis, commonly known as tea shot-hole borer, is a species of weevil native to South and South-East Asia through to Australia, but introduced to Western countries.

Ambrosiella roeperi is the fungal symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus, facilitating this insect’s capacity to accumulate on and damage a diverse array of woody plants from around the world. It is one of several important nutritional partners derived from order Microascales that sustain and are transported by xylomycetophagous scolytine beetles.

<i>Cryphalus mangiferae</i> Species of beetle

Cryphalus mangiferae, the mango bark beetle, is a tiny tropical bark beetle which attacks mango trees. The species belongs to the family Curculionidae, subfamily Scolytinae. It is often cited as a vector of plant pathogenic fungi infecting mango trees and in some countries like Pakistan it is regarded as a serious threat to mango cultivation.

References

  1. "Xylosandrus germanus Report". Integrated Taxonomic Information System. Retrieved 2018-05-04.
  2. 1 2 3 4 Milbrath, Lindsey R; Biazzo, Jeromy; Mudrak, Erika (20 January 2024). "In-gallery social behaviors of the ambrosia beetle, Xylosandrus germanus (Coleoptera: Curculionidae)". Environmental Entomology. 53 (1): 85–93. doi: 10.1093/ee/nvae003 . PMID   38245821.
  3. Inward, Daegan (2015). "Rapid Pest Risk Analysis for Xylosandrus germanus (Coleoptera: Scolytinae)". Forest Research. Retrieved 5 June 2018.
  4. Mayers, Chase G.; McNew, Douglas L.; Harrington, Thomas C.; Roeper, Richard A.; Fraedrich, Stephen W.; Biedermann, Peter H. W.; Castrillo, Louela A.; Reed, Sharon E. (1 November 2015). "Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia". Fungal Biology. 119 (11): 1075–1092. doi: 10.1016/j.funbio.2015.08.002 . ISSN   1878-6146. PMID   26466881.
  5. 1 2 3 4 5 6 Kushiyev, R.; Tuncer, C.; Erper, I.; Özer, G. (2021). "The utility of Trichoderma spp. isolates to control of Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae)". Journal of Plant Diseases & Protection. 128 (1): 153–160. doi:10.1007/s41348-020-00375-1. S2CID   256557880.
  6. 1 2 3 4 5 6 7 Agnello, A. M.; Breth, D. I.; Tee, E. M.; Cox, K. D.; Villani, S. M.; Ayer, K. M.; Wallis, A. E.; Donahue, D. J.; Combs, D. B.; Davis, A. E.; Neal, J. A.; English-Loeb, F. M. (2017). "Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) Occurrence, Fungal Associations, and Management Trials in New York Apple Orchards". Journal of Economic Entomology. 110 (5): 2149–2164. doi:10.1093/jee/tox189. PMID   29048587.
  7. 1 2 3 4 5 6 CABI (2022-01-07). Xylosandrus germanus (black timber bark beetle) (Report). doi: 10.1079/cabicompendium.57237 .
  8. 1 2 3 4 Gugliuzzo, Antonio; Kreuzwieser, Jürgen; Ranger, Christopher M.; Tropea Garzia, Giovanna; Biondi, Antonio; Biedermann, Peter H. W. (2023). "Volatiles of fungal cultivars act as cues for host-selection in the fungus-farming ambrosia beetle Xylosandrus germanus". Frontiers in Microbiology. 14. doi: 10.3389/fmicb.2023.1151078 . ISSN   1664-302X. PMC   10140376 . PMID   37125205.
  9. 1 2 3 Agnello, A. M.; Combs, D. B.; Filgueiras, C. C.; Willett, D. S.; Mafra-Neto, A. (2021). "Reduced Infestation by Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) in Apple Trees Treated with Host Plant Defense Compounds". Journal of Economic Entomology. 114 (5): 2162–2170. doi:10.1093/jee/toab153. PMID   34378779.
  10. 1 2 3 4 5 Dzurenko, M.; Galko, J.; Kulfan, J.; Váľka, J.; Holec, J.; Saniga, M.; Zúbrik, M.; Vakula, J.; Ranger, C. M.; Skuhrovec, J.; Jauschová, T.; Zach, P. (2022). "Can the invasive ambrosia beetle Xylosandrus germanus withstand an unusually cold winter in the West Carpathian forest in Central Europe?". Folia Oecologica. 49 (1): 1–8. doi: 10.2478/foecol-2022-0001 .
  11. Monterrosa, A.; Acebes, A. L.; Blaauw, B.; Joseph, S. V. (2021). "Effects of Trap, and Ethanol Lure Type and Age on Attraction of Ambrosia Beetles (Coleoptera: Curculionidae)". Journal of Economic Entomology. 114 (4): 1647–1654. doi:10.1093/jee/toab089. PMID   34041550.
  12. 1 2 3 Castrillo, L. A.; Griggs, M. H.; Vandenberg, J. D. (2012). "Brood Production by Xylosandrus germanus (Coleoptera: Curculionidae) and Growth of Its Fungal Symbiont on Artificial Diet Based on Sawdust of Different Tree Species". Environmental Entomology. 41 (4): 822–827. doi:10.1603/EN11251. S2CID   86708819.
  13. 1 2 Weber, B. C; McPherson, J. E (15 May 1983). "Life History of the Ambrosia Beetle Xylosandrus germanus (Coleoptera: Scolytidae)". Annals of the Entomological Society of America. 76 (3): 455–462. doi:10.1093/aesa/76.3.455.
  14. 1 2 3 4 Hauptman, T.; Pavlin, R.; Grošelj, P.; Jurc, M. (2019). "Distribution and abundance of the alien Xylosandrus germanus and other ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) in different forest stands in central Slovenia". IForest - Biogeosciences and Forestry. 12 (1): 451–458. doi: 10.3832/ifor3114-012 .
  15. 1 2 Galko, Juraj. "First record of the ambrosia beetle, Xylosandrus germanus (Blandford, 1894) (Coleoptera: Curculionidae, Scolytinae) in Slovakia" . Retrieved Feb 24, 2024.
  16. 1 2 3 Galko, J.; Dzurenko, M.; Ranger, C. M.; Kulfan, J.; Kula, E.; Nikolov, C.; Zubrik, M.; Zach, P. (2019). "Distribution, Habitat Preference, and Management of the Invasive Ambrosia Beetle Xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae) in European Forests with an Emphasis on the West Carpathians". Forests. 10 (1): 1–18.
  17. 1 2 Fiala, T.; Holusa, J.; Prochazka, J.; Cizek, L.; Dzurenko, M.; Foit, J.; Galko, J.; Kasak, J.; Kulfan, J.; Lakatos, F.; Nakladal, O.; Schlaghamersky, J.; Svatos, M.; Trombik, J.; Zabransky, P. (2020). "Xylosandrus germanus in Central Europe: Spread into and within the Czech Republic". Journal of Applied Entomology. 144 (6): 423–433. doi:10.1111/jen.12759. S2CID   218930058.
  18. Tuncer, C.; Rahman, K.; Ismail, E.; Ismail, O. O.; Islam, S. (2019). "Efficacy of native isolates of Metarhizium anisopliae and Beauveria bassiana against the invasive ambrosia beetle, Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae)". Egyptian Journal of Biological Pest Control. 29 (1): 1–6. doi: 10.1186/s41938-019-0132-x .

Further reading