LY-393558

Last updated
LY-393558
LY-393558 Structure.svg
Identifiers
  • 1-(2-(4-(6-fluoro-1H-indol-3-yl)-3,6-dihydropyridin-1(2H)-yl)ethyl)-3-isopropyl-6-(methylsulfonyl)-3,4-dihydro-1H-benzo[c][1,2,6]thiadiazine 2,2-dioxide
CAS Number
PubChem CID
ChemSpider
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C26H31FN4O4S2
Molar mass 546.68 g·mol−1
3D model (JSmol)
  • FC1=CC=C2C(NC=C2C3=CCN(CCN4S(N(C(C)C)CC5=C4C=CC(S(=O)(C)=O)=C5)(=O)=O)CC3)=C1
  • InChI=1S/C26H31FN4O4S2/c1-18(2)31-17-20-14-22(36(3,32)33)5-7-26(20)30(37(31,34)35)13-12-29-10-8-19(9-11-29)24-16-28-25-15-21(27)4-6-23(24)25/h4-8,14-16,18,28H,9-13,17H2,1-3H3
  • Key:QUSLYAPLTMMCFE-UHFFFAOYSA-N

LY-393558 is a potent serotonin reuptake inhibitor and antagonist of the 5-HT1B, 5-HT1D, and 5-HT2A receptors. LY-393558 was also found to reduce serotonin-induced vasoconstriction, indicating that it may have therapeutic potential for the treatment of pulmonary hypertension. [1] [2]

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Azapirone</span> Drug class of psycotropic drugs

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations. 5-HT is short for 5-hydroxy-tryptamine or serotonin. This is the main excitatory receptor subtype among the GPCRs for serotonin, although 5-HT2A may also have an inhibitory effect on certain areas such as the visual cortex and the orbitofrontal cortex. This receptor was first noted for its importance as a target of serotonergic psychedelic drugs such as LSD and psilocybin mushrooms. Later it came back to prominence because it was also found to be mediating, at least partly, the action of many antipsychotic drugs, especially the atypical ones.

<span class="mw-page-title-main">Serotonin receptor agonist</span> Serotonin receptor agonist

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

<span class="mw-page-title-main">Desmetramadol</span> Medication

Desmetramadol (INN), also known as O-desmethyltramadol (O-DSMT), is an opioid analgesic and the main active metabolite of tramadol. Tramadol is demethylated by the liver enzyme CYP2D6 in the same way as codeine, and so similarly to the variation in effects seen with codeine, individuals who have a less active form of CYP2D6 will tend to get reduced analgesic effects from tramadol. This also results in a ceiling effect which limits tramadol's range of therapeutic benefits to the treatment of moderate pain.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptor, or 5-HT receptor, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarisation and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

5-HT<sub>1B</sub> receptor Mammalian protein found in Homo sapiens

5-hydroxytryptamine receptor 1B also known as the 5-HT1B receptor is a protein that in humans is encoded by the HTR1B gene. The 5-HT1B receptor is a 5-HT receptor subtype.

<span class="mw-page-title-main">8-OH-DPAT</span> Chemical compound

8-OH-DPAT is a research chemical of the aminotetralin chemical class which was developed in the 1980s and has been widely used to study the function of the 5-HT1A receptor. It was one of the first major 5-HT1A receptor full agonists to be discovered.

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT).

5-HT<sub>5A</sub> receptor Protein-coding gene in the species Homo sapiens

5-Hydroxytryptamine (serotonin) receptor 5A, also known as HTR5A, is a protein that in humans is encoded by the HTR5A gene. Agonists and antagonists for 5-HT receptors, as well as serotonin uptake inhibitors, present promnesic (memory-promoting) and/or anti-amnesic effects under different conditions, and 5-HT receptors are also associated with neural changes.

<span class="mw-page-title-main">Terguride</span> Chemical compound

Terguride, sold under the brand name Teluron, is a serotonin receptor antagonist and dopamine receptor agonist of the ergoline family. It is approved for and used as a prolactin inhibitor in the treatment of hyperprolactinemia in Japan. Terguride is taken by mouth.

<span class="mw-page-title-main">SB-242084</span> Chemical compound

SB-242084 is a psychoactive drug and research chemical which acts as a selective antagonist for the 5HT2C receptor. It has anxiolytic effects, and enhances dopamine signalling in the limbic system, as well as having complex effects on the dopamine release produced by cocaine, increasing it in some brain regions but reducing it in others. It has been shown to increase the effectiveness of the selective serotonin reuptake inhibitor (SSRI) class of antidepressants, and may also reduce their side effects. In animal studies, SB-242084 produced stimulant-type activity and reinforcing effects, somewhat similar to but much weaker than cocaine or amphetamines.

<span class="mw-page-title-main">RS-127445</span> Chemical compound

RS-127445 is a drug which acts as a potent and selective antagonist at the serotonin 5-HT2B receptor, with around 1000x selectivity over the closely related 5-HT2A and 5-HT2C receptors. The role of the 5-HT2B receptor in the body is still poorly understood, and RS-127445 has been a useful tool in unravelling the function of the various systems in which this receptor is expressed.

<span class="mw-page-title-main">Serotonin antagonist and reuptake inhibitor</span> Class of drug

Serotonin antagonist and reuptake inhibitors (SARIs) are a class of drugs used mainly as antidepressants, but also as anxiolytics and hypnotics. They act by antagonizing serotonin receptors such as 5-HT2A and inhibiting the reuptake of serotonin, norepinephrine, and/or dopamine. Additionally, most also antagonize α1-adrenergic receptors. The majority of the currently marketed SARIs belong to the phenylpiperazine class of compounds.

<span class="mw-page-title-main">PRX-08066</span> Chemical compound

PRX-08066 is a drug discovered and developed by Predix Pharmaceuticals [Dale S. Dhanoa et al. Patent US 7,030,240 B2], which acts as a potent and selective antagonist at the serotonin 5-HT2B receptor, with a 5-HT2Bbinding affinity (Ki) of 3.4nM, and high selectivity over the closely related 5-HT2A and 5-HT2C receptors and other receptor targets. PRX-08066 and other selective 5-HT2B antagonists are being researched for the treatment of pulmonary arterial hypertension, following the discovery that the potent 5-HT2B agonist norfenfluramine produces pulmonary arterial hypertension and subsequent heart valve damage. In animal studies, PRX-08066 has been found to reduce several key indicators of pulmonary arterial hypertension and improved cardiac output, with similar efficacy to established drugs for this condition such as bosentan, sildenafil, beraprost and iloprost. It is also being researched for potential anti-cancer applications, due to its ability to inhibit fibroblast activation.

<span class="mw-page-title-main">LY-215,840</span> Chemical compound

LY-215,840 is an ergoline derivative drug developed by Eli Lilly, which acts as a potent and selective antagonist at the serotonin 5-HT2 and 5-HT7 receptors. It has anti-hypertensive and muscle relaxant effects in animal studies.

<span class="mw-page-title-main">LY-367,265</span>

LY-367,265 is a drug developed by Eli Lilly, which acts as both a potent and selective antagonist at the serotonin 5-HT2A receptor, and also a selective serotonin reuptake inhibitor (SSRI). It has antidepressant effects in animal studies, reduces glutamate signalling in the brain and increases the analgesic effects of morphine.

<span class="mw-page-title-main">SN-22</span> Chemical compound

SN-22 is a chemical compound which acts as a moderately selective agonist at the 5-HT2 family of serotonin receptors, with a Ki of 19nM at 5HT2 subtypes vs 514 nM at 5-HT1A receptors. Many related derivatives are known, most of which are ligands for 5-HT1A, 5-HT6 or dopamine D2 receptors or show SSRI activity.

<span class="mw-page-title-main">LY-456219</span> Chemical compound

LY-456219 is a potent and selective serotonin 5-HT1D receptor antagonist which has been used in research to study the function of presynaptic 5-HT1D autoreceptors. LY-456219 lacks significant affinity for the 5-HT1B, α1 adrenergic, and dopamine D2 receptors.

<span class="mw-page-title-main">LY-456220</span> Chemical compound

LY-456220 is a potent and selective serotonin 5-HT1D receptor antagonist which has been used in research to study the function of presynaptic 5-HT1D autoreceptors. LY-456220 lacks significant affinity for the 5-HT1B, α1 adrenergic, and dopamine D2 receptors.

References

  1. Mitchell SN, Greenslade RG, Cooper J (November 2001). "LY393558, a 5-hydroxytryptamine reuptake inhibitor and 5-HT(1B/1D) receptor antagonist: effects on extracellular levels of 5-hydroxytryptamine in the guinea pig and rat". European Journal of Pharmacology. 432 (1): 19–27. doi:10.1016/S0014-2999(01)01469-8. PMID   11734183.
  2. Baranowska-Kuczko M, Kozłowska H, Schlicker E, Göthert M, MacLean MR, Kozłowski M, et al. (June 2020). "Reduction of the serotonin 5-HT1B and 5-HT2A receptor-mediated contraction of human pulmonary artery by the combined 5-HT1B receptor antagonist and serotonin transporter inhibitor LY393558". Pharmacological Reports. 72 (3): 756–762. doi:10.1007/s43440-020-00105-2. PMC   7329800 . PMID   32333296.