FGF1

Last updated
FGF1
Protein FGF1 PDB 1afc.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases FGF1 , AFGF, ECGF, ECGF-beta, ECGFA, ECGFB, FGF-1, FGF-alpha, FGFA, GLIO703, HBGF-1, HBGF1, fibroblast growth factor 1
External IDs OMIM: 131220 MGI: 95515 HomoloGene: 625 GeneCards: FGF1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_010197

RefSeq (protein)

NP_034327

Location (UCSC) Chr 5: 142.59 – 142.7 Mb Chr 18: 38.97 – 39.06 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Fibroblast growth factor 1, (FGF-1) also known as acidic fibroblast growth factor (aFGF), is a growth factor and signaling protein encoded by the FGF1 gene. [5] [6] It is synthesized as a 155 amino acid polypeptide, whose mature form is a non-glycosylated 17-18 kDa protein. Fibroblast growth factor protein was first purified in 1975, but soon afterwards others using different conditions isolated acidic FGF, Heparin-binding growth factor-1, and Endothelial cell growth factor-1. [7] Gene sequencing revealed that this group was actually the same growth factor and that FGF1 was a member of a family of FGF proteins.

FGF-1 has no definitive signal sequence and thus is not secreted through classical pathways, but it does appear to form a disulfide linked dimer inside cells that associate with a complex of proteins at the cell membrane (including S100A13 and Syt1) which then help flip it through the membrane to the exterior of the cell. [8] [9] Once in the reducing conditions of the surrounding tissue, the dimer dissociates into monomeric FGF1 that can enter systemic circulation or be sequestered in tissues binding to heparan sulfate proteoglycans of the extracellular matrix. FGF1 can then bind to and exert its effects via specific fibroblast growth factor receptor (FGFR) proteins which themselves constitute a family of closely related molecules. [10]

In addition to its extracellular activity, FGF1 can also function intracellularly. The protein has a nuclear localization sequence (NLS) but the route that FGF1 takes to get to the nucleus is unclear and it appears that some sort of cell surface receptor binding is necessary, followed by its internalization and translocation to the nucleus whereupon it can interact with nuclear isoforms of FGFRs. [10] This is different from FGF2 which also can activate nuclear FGFRs but has splicing variants of the protein that never leave the cell and go directly to the nucleus.[ citation needed ]

Function

FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein functions as a modifier of endothelial cell migration and proliferation, as well as an angiogenic factor. It acts as a mitogen for a variety of mesoderm- and neuroectoderm-derived cells in vitro, thus is thought to be involved in organogenesis. Three alternatively spliced variants encoding different isoforms have been described. [11]

FGF1 is multifunctional with many reported effects. For one example, in mice with diet-induced diabetes that is an experimental equivalent of type 2 diabetes in humans, a single injection of the FGF1 protein is enough to restore blood sugar levels to a healthy range for > 2 days. [12]

Interactions

FGF1 has been shown to interact with:

See also

Related Research Articles

<span class="mw-page-title-main">Basic fibroblast growth factor</span> Growth factor and signaling protein otherwise known as FGF2

Fibroblast growth factor 2, also known as basic fibroblast growth factor (bFGF) and FGF-β, is a growth factor and signaling protein encoded by the FGF2 gene. It binds to and exerts effects via specific fibroblast growth factor receptor (FGFR) proteins, themselves a family of closely related molecules. Fibroblast growth factor protein was first purified in 1975; soon thereafter three variants were isolated: 'basic FGF' (FGF2); Heparin-binding growth factor-2; and Endothelial cell growth factor-2. Gene sequencing revealed that this group is the same FGF2 protein and is a member of a family of FGF proteins.

Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by macrophages; they are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in their function lead to a range of developmental defects. These growth factors typically act as systemic or locally circulating molecules of extracellular origin that activate cell surface receptors. A defining property of FGFs is that they bind to heparin and to heparan sulfate. Thus, some are sequestered in the extracellular matrix of tissues that contains heparan sulfate proteoglycans and are released locally upon injury or tissue remodeling.

<span class="mw-page-title-main">FGF3</span> Protein-coding gene in humans

INT-2 proto-oncogene protein also known as FGF-3 is a protein that in humans is encoded by the FGF3 gene.

<span class="mw-page-title-main">Receptor tyrosine kinase</span> Class of enzymes

Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. Of the 90 unique tyrosine kinase genes identified in the human genome, 58 encode receptor tyrosine kinase proteins. Receptor tyrosine kinases have been shown not only to be key regulators of normal cellular processes but also to have a critical role in the development and progression of many types of cancer. Mutations in receptor tyrosine kinases lead to activation of a series of signalling cascades which have numerous effects on protein expression. Receptor tyrosine kinases are part of the larger family of protein tyrosine kinases, encompassing the receptor tyrosine kinase proteins which contain a transmembrane domain, as well as the non-receptor tyrosine kinases which do not possess transmembrane domains.

The fibroblast growth factor receptors (FGFR) are, as their name implies, receptors that bind to members of the fibroblast growth factor (FGF) family of proteins. Some of these receptors are involved in pathological conditions. For example, a point mutation in FGFR3 can lead to achondroplasia.

<span class="mw-page-title-main">Fibroblast growth factor receptor 2</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 2 (FGFR2) also known as CD332 is a protein that in humans is encoded by the FGFR2 gene residing on chromosome 10. FGFR2 is a receptor for fibroblast growth factor.

<span class="mw-page-title-main">Fibroblast growth factor receptor 1</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 1 (FGFR1), also known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2 / Pfeiffer syndrome, and CD331, is a receptor tyrosine kinase whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome, and clonal eosinophilias.

<span class="mw-page-title-main">Fibroblast growth factor receptor 4</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 4 is a protein that in humans is encoded by the FGFR4 gene. FGFR4 has also been designated as CD334.

<span class="mw-page-title-main">SYT1</span> Protein-coding gene in the species Homo sapiens

Synaptotagmin-1 is a protein that in humans is encoded by the SYT1 gene.

<span class="mw-page-title-main">FGF10</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor 10 is a protein that in humans is encoded by the FGF10 gene.

<span class="mw-page-title-main">FGF9</span> Protein-coding gene in the species Homo sapiens

Glia-activating factor is a protein that in humans is encoded by the FGF9 gene.

<span class="mw-page-title-main">S100A13</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein A13 (S100A13) is a protein that in humans is encoded by the S100A13 gene.

<span class="mw-page-title-main">FGF4</span> Fibroblast growth factor gene

Fibroblast growth factor 4 is a protein that in humans is encoded by the FGF4 gene.

<span class="mw-page-title-main">FGF5</span> Mammalian protein found in Homo sapiens

Fibroblast growth factor 5 is a protein that in humans is encoded by the FGF5 gene.

<span class="mw-page-title-main">TNFRSF12A</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor superfamily member 12A also known as the TWEAK receptor (TWEAKR) is a protein that in humans is encoded by the TNFRSF12A gene.

<span class="mw-page-title-main">FGF18</span> Mammalian protein found in Homo sapiens

Fibroblast growth factor 18 (FGF18) is a protein that is encoded by the Fgf18 gene in humans. The protein was first discovered in 1998, when two newly-identified murine genes Fgf17 and Fgf18 were described and confirmed as being closely related by sequence homology to Fgf8. The three proteins were eventually grouped into the FGF8 subfamily, which contains several of the endocrine FGF superfamily members FGF8, FGF17, and FGF18. Subsequent studies identified FGF18's role in promoting chondrogenesis, and an apparent specific activity for the generation of the hyaline cartilage in articular joints.

<span class="mw-page-title-main">FGFBP1</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor-binding protein 1 is a protein that in humans is encoded by the FGFBP1 gene.

<span class="mw-page-title-main">FGF6</span> Protein-coding gene in humans

Fibroblast growth factor 6 is a protein that in humans is encoded by the FGF6 gene.

<span class="mw-page-title-main">FIBP</span> Protein-coding gene in the species Homo sapiens

Acidic fibroblast growth factor intracellular-binding protein is a protein that in humans is encoded by the FIBP gene.

<span class="mw-page-title-main">IL17RD</span>

Interleukin 17 receptor D is a protein that in humans is encoded by the IL17RD gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000113578 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000036585 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Dionne CA, Crumley G, Bellot F, Kaplow JM, Searfoss G, Ruta M, Burgess WH, Jaye M, Schlessinger J (September 1990). "Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors". The EMBO Journal. 9 (9): 2685–92. doi:10.1002/j.1460-2075.1990.tb07454.x. PMC   551973 . PMID   1697263.
  6. Jaye M, Howk R, Burgess W, Ricca GA, Chiu IM, Ravera MW, O'Brien SJ, Modi WS, Maciag T, Drohan WN (August 1986). "Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization". Science. 233 (4763): 541–5. Bibcode:1986Sci...233..541J. doi:10.1126/science.3523756. PMID   3523756.
  7. Burgess WH, Maciag T (1989). "The heparin-binding (fibroblast) growth factor family of proteins". Annual Review of Biochemistry. 58: 575–606. doi:10.1146/annurev.bi.58.070189.003043. PMID   2549857.
  8. Tarantini F, Gamble S, Jackson A, Maciag T (December 1995). "The cysteine residue responsible for the release of fibroblast growth factor-1 residues in a domain independent of the domain for phosphatidylserine binding". The Journal of Biological Chemistry. 270 (49): 29039–42. doi: 10.1074/jbc.270.49.29039 . PMID   7493920.
  9. 1 2 3 Prudovsky I, Bagala C, Tarantini F, Mandinova A, Soldi R, Bellum S, Maciag T (July 2002). "The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export". The Journal of Cell Biology. 158 (2): 201–8. doi:10.1083/jcb.200203084. PMC   2173119 . PMID   12135982.
  10. 1 2 Coleman SJ, Bruce C, Chioni AM, Kocher HM, Grose RP (August 2014). "The ins and outs of fibroblast growth factor receptor signalling". Clinical Science. 127 (4): 217–31. doi:10.1042/CS20140100. PMID   24780002.
  11. "Entrez Gene: FGF1 fibroblast growth factor 1 (acidic)".
  12. Suh JM, Jonker JW, Ahmadian M, Goetz R, Lackey D, Osborn O, Huang Z, Liu W, Yoshihara E, van Dijk TH, Havinga R, Fan W, Yin YQ, Yu RT, Liddle C, Atkins AR, Olefsky JM, Mohammadi M, Downes M, Evans RM (September 2014). "Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer". Nature. 513 (7518): 436–9. Bibcode:2014Natur.513..436S. doi:10.1038/nature13540. PMC   4184286 . PMID   25043058.*Lay summary in: "One injection stops diabetes in its tracks". Salk Institute. July 16, 2014.
  13. 1 2 3 Skjerpen CS, Nilsen T, Wesche J, Olsnes S (August 2002). "Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity". The EMBO Journal. 21 (15): 4058–69. doi:10.1093/emboj/cdf402. PMC   126148 . PMID   12145206.
  14. Kolpakova E, Wiedłocha A, Stenmark H, Klingenberg O, Falnes PO, Olsnes S (November 1998). "Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor". The Biochemical Journal. 336 (1): 213–22. doi:10.1042/bj3360213. PMC   1219860 . PMID   9806903.
  15. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M (September 2000). "Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization". Molecular Cell. 6 (3): 743–50. doi: 10.1016/s1097-2765(00)00073-3 . PMID   11030354.
  16. 1 2 3 Santos-Ocampo S, Colvin JS, Chellaiah A, Ornitz DM (January 1996). "Expression and biological activity of mouse fibroblast growth factor-9". The Journal of Biological Chemistry. 271 (3): 1726–31. doi: 10.1074/jbc.271.3.1726 . PMID   8576175.
  17. Stauber DJ, DiGabriele AD, Hendrickson WA (January 2000). "Structural interactions of fibroblast growth factor receptor with its ligands". Proceedings of the National Academy of Sciences of the United States of America. 97 (1): 49–54. Bibcode:2000PNAS...97...49S. doi: 10.1073/pnas.97.1.49 . PMC   26614 . PMID   10618369.
  18. Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (October 2000). "Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin". Nature. 407 (6807): 1029–34. Bibcode:2000Natur.407.1029P. doi:10.1038/35039551. PMID   11069186. S2CID   4418272.
  19. Chellaiah A, Yuan W, Chellaiah M, Ornitz DM (December 1999). "Mapping ligand binding domains in chimeric fibroblast growth factor receptor molecules. Multiple regions determine ligand binding specificity". The Journal of Biological Chemistry. 274 (49): 34785–94. doi: 10.1074/jbc.274.49.34785 . PMID   10574949.
  20. Loo BB, Darwish KK, Vainikka SS, Saarikettu JJ, Vihko PP, Hermonen JJ, Goldman AA, Alitalo KK, Jalkanen MM (May 2000). "Production and characterization of the extracellular domain of recombinant human fibroblast growth factor receptor 4". The International Journal of Biochemistry & Cell Biology. 32 (5): 489–97. doi:10.1016/S1357-2725(99)00145-4. PMID   10736564.
  21. Kan M, Wu X, Wang F, McKeehan WL (May 1999). "Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase". The Journal of Biological Chemistry. 274 (22): 15947–52. doi: 10.1074/jbc.274.22.15947 . PMID   10336501.
  22. Mizukoshi E, Suzuki M, Loupatov A, Uruno T, Hayashi H, Misono T, Kaul SC, Wadhwa R, Imamura T (October 1999). "Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin". The Biochemical Journal. 343 (2): 461–6. doi:10.1042/0264-6021:3430461. PMC   1220575 . PMID   10510314.
  23. 1 2 Mouta Carreira C, LaVallee TM, Tarantini F, Jackson A, Lathrop JT, Hampton B, Burgess WH, Maciag T (August 1998). "S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro". The Journal of Biological Chemistry. 273 (35): 22224–31. doi: 10.1074/jbc.273.35.22224 . hdl: 2158/26736 . PMID   9712836.
  24. Landriscina M, Bagalá C, Mandinova A, Soldi R, Micucci I, Bellum S, Prudovsky I, Maciag T (July 2001). "Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress". The Journal of Biological Chemistry. 276 (27): 25549–57. doi: 10.1074/jbc.M102925200 . PMID   11432880.

Further reading