2-Methylnaphthalene

Last updated
2-Methylnaphthalene
2-methylnaphthalene.svg
Names
Preferred IUPAC name
2-Methylnaphthalene
Other names
β-methylnaphthalene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.001.890 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C11H10/c1-9-6-7-10-4-2-3-5-11(10)8-9/h2-8H,1H3
    Key: QIMMUPPBPVKWKM-UHFFFAOYSA-N
  • InChI=1/C11H10/c1-9-6-7-10-4-2-3-5-11(10)8-9/h2-8H,1H3
    Key: QIMMUPPBPVKWKM-UHFFFAOYAY
  • Cc1ccc2ccccc2c1
Properties
C11H10
Molar mass 142.201 g·mol−1
AppearanceWaxy white solid
Melting point 35 °C (95 °F; 308 K)
Boiling point 241.1 °C (466.0 °F; 514.2 K) [1]
−102.6·10−6 cm3/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2-Methylnaphthalene is a simple polycyclic aromatic hydrocarbon (PAH). It is generally isolated from coal tar, of which it is a minor component. [2]

Contents

Uses

The quinone derivative, Menadione, can be formed by the oxidation of 2-methylnaphthalene and finds use as a synthetic form of vitamin K. [3]

Astrochemistry

According to NASA, over 20% of the carbon in the universe may be associated with PAHs, possible starting materials for the formation of life. [4] PAHs seem to have been formed shortly after the Big Bang, are abundant in the universe, [5] [6] [7] and are associated with new stars and exoplanets. [4]

See also

References

  1. Feldman, Julian; Orchin, Milton (December 1952). "Separation of 1- and 2-Methylnaphthalenes by Azeotropic Distillation". Industrial & Engineering Chemistry. 44 (12): 2909–2914. doi:10.1021/ie50516a041.
  2. Gerd Collin; Hartmut Höke; Helmut Greim (2003). "Naphthalene and Hydronaphthalenes". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. ISBN   978-3-527-30673-2..
  3. de Souza, Acácio S; Ribeiro, Ruan Carlos B; Costa, Dora C S; Pauli, Fernanda P; Pinho, David R; de Moraes, Matheus G; da Silva, Fernando de C; Forezi, Luana da S M; Ferreira, Vitor F (11 April 2022). "Menadione: a platform and a target to valuable compounds synthesis". Beilstein Journal of Organic Chemistry. 18: 381–419. doi:10.3762/bjoc.18.43.
  4. 1 2 Hoover, Rachel (February 21, 2014). "Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That". NASA . Retrieved February 22, 2014.
  5. Carey, Bjorn (October 18, 2005). "Life's Building Blocks 'Abundant in Space'". Space.com . Retrieved March 3, 2014.
  6. Hudgins, Douglas M.; Bauschlicher Jr, Charles W.; Allamandola, L. J. (October 10, 2005). "Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population". Astrophysical Journal . 632 (1): 316–332. Bibcode:2005ApJ...632..316H. doi: 10.1086/432495 .
  7. Allamandola, Louis; et al. (April 13, 2011). "Cosmic Distribution of Chemical Complexity". NASA . Archived from the original on February 27, 2014. Retrieved March 3, 2014.