Apolipoprotein C-III

Last updated
APOC3
APOC3.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases APOC3 , APOCIII, HALP2, apolipoprotein C3, Apo-C3, ApoC-3
External IDs OMIM: 107720; MGI: 88055; HomoloGene: 81615; GeneCards: APOC3; OMA:APOC3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000040

NM_023114
NM_001289755
NM_001289756
NM_001289833

RefSeq (protein)

NP_000031

NP_001276684
NP_001276685
NP_001276762
NP_075603

Location (UCSC) Chr 11: 116.83 – 116.83 Mb Chr 9: 46.14 – 46.15 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Apolipoprotein C-III also known as apo-CIII, and apolipoprotein C3, is a protein that in humans is encoded by the APOC3 gene. Apo-CIII is secreted by the liver as well as the small intestine, and is found on triglyceride-rich lipoproteins such as chylomicrons, very low density lipoprotein (VLDL), and remnant cholesterol. [5]

Contents

Structure

ApoC-III
Identifiers
SymbolApoC-III
Pfam PF05778
InterPro IPR008403
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

ApoC-III is a relatively small protein containing 79 amino acids that can be glycosylated at threonine-74. [6] The most abundant glycoforms are characterized by an O-linked disaccharide galactose linked to N-acetylgalactosamine (Gal–GalNAc), further modified with up to two sialic acid residues. Less abundant glycoforms are characterized by more complex and fucosylated glycan moieties. [7]

Function

APOC3 inhibits lipoprotein lipase and hepatic lipase; it is thought to inhibit hepatic uptake [8] of triglyceride-rich particles. The APOA1 , APOC3 and APOA4 genes are closely linked in both rat and human genomes. The A-I and A-IV genes are transcribed from the same strand, while the A-1 and C-III genes are convergently transcribed. An increase in apoC-III levels induces the development of hypertriglyceridemia. Recent evidence suggests an intracellular role for Apo-CIII in promoting the assembly and secretion of triglyceride-rich VLDL particles from hepatic cells under lipid-rich conditions. [9] However, two naturally occurring point mutations in human apoC3 coding sequence, namely Ala23Thr and Lys58Glu have been shown to abolish the intracellular assembly and secretion of triglyceride-rich VLDL particles from hepatic cells. [10] [11]

Clinical significance

Overexpression of Apo-CIII in humans contributes to atherosclerosis. [5] Two novel susceptibility haplotypes (specifically, P2-S2-X1 and P1-S2-X1) have been discovered in ApoAI-CIII-AIV gene cluster on chromosome 11q23; these confer approximately threefold higher risk of coronary heart disease in normal [12] as well as non-insulin diabetes mellitus. [13] In persons with type 2 diabetes, elevated plasma Apo-CIII is associated with higher plasma triglycerides and greater coronary artery calcification (a measure of subclinical atherosclerosis). [14]

Apo-CIII delays the catabolism of triglyceride rich particles. HDL cholesterol particles that bear Apo-CIII are associated with increased, rather than decreased, risk for coronary heart disease. [15]

Elevations of Apo-CIII associated with single-nucleotide polymorphisms found in genetic variation studies may predispose patients to non-alcoholic fatty liver disease, [16] although the association has been questioned [17] and may be specific to certain ethnicities [18] [19] or to people without central obesity. [20]

Antisense oligonucleotides that bind APOC3 mRNA and prevent its translation have been found to reduce episodes of acute pancreatitis in people with familial chylomicronemia syndrome and lower their triglyceride levels in blood. Adverse effects include thrombocytopenia, which may be prevented by targeting hepatocellular APOC3 expression with a chemically modified oligonucleotide. [21]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
StatinPathway WP430.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
StatinPathway WP430.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Statin pathway edit]]
Statin pathway edit
  1. The interactive pathway map can be edited at WikiPathways: "Statin_Pathway_WP430".

Apolipoprotein CIII and HDL

Apolipoprotein CIII is also found on HDL particles. Formation of APOCIII-containing HDL is not a matter of simple binding of APOCII to pre-existing HDL particles but requires the lipid transported ABCA1 in a fashion similar to APOA1-containing HDL. [22] Accumulation of APOCIII on HDL is important for the maintenance of plasma triglyceride homeostasis since it prevents excessive amount of APOCIII on VLDL and other triglyceride rich lipoproteins, thus preventing APOCIII-mediated inhibition of LpL and the subsequent hydrolysis of plasma triglycerides. This may explain the hypertriglyceridemia associated with ABCA1-deficiency in patients with Tangier's disease.

Related Research Articles

<span class="mw-page-title-main">Low-density lipoprotein</span> One of the five major groups of lipoprotein

Low-density lipoprotein (LDL) is one of the five major groups of lipoprotein that transport all fat molecules around the body in extracellular water. These groups, from least dense to most dense, are chylomicrons, very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL). LDL delivers fat molecules to cells. LDL has been associated with the progression of atherosclerosis.

<span class="mw-page-title-main">Lipoprotein</span> Biochemical assembly whose purpose is to transport hydrophobic lipid molecules

A lipoprotein is a biochemical assembly whose primary function is to transport hydrophobic lipid molecules in water, as in blood plasma or other extracellular fluids. They consist of a triglyceride and cholesterol center, surrounded by a phospholipid outer shell, with the hydrophilic portions oriented outward toward the surrounding water and lipophilic portions oriented inward toward the lipid center. A special kind of protein, called apolipoprotein, is embedded in the outer shell, both stabilising the complex and giving it a functional identity that determines its role.

Very-low-density lipoprotein (VLDL), density relative to extracellular water, is a type of lipoprotein made by the liver. VLDL is one of the five major groups of lipoproteins that enable fats and cholesterol to move within the water-based solution of the bloodstream. VLDL is assembled in the liver from triglycerides, cholesterol, and apolipoproteins. VLDL is converted in the bloodstream to low-density lipoprotein (LDL) and intermediate-density lipoprotein (IDL). VLDL particles have a diameter of 30–80 nanometers (nm). VLDL transports endogenous products, whereas chylomicrons transport exogenous (dietary) products. In the early 2010s both the lipid composition and protein composition of this lipoprotein were characterised in great detail.

<span class="mw-page-title-main">Chylomicron</span> One of the five major groups of lipoprotein

Chylomicrons, also known as ultra low-density lipoproteins (ULDL), are lipoprotein particles that consist of triglycerides (85–92%), phospholipids (6–12%), cholesterol (1–3%), and proteins (1–2%). They transport dietary lipids, such as fats and cholesterol, from the intestines to other locations in the body, within the water-based solution of the bloodstream. ULDLs are one of the five major groups lipoproteins are divided into based on their density. A protein specific to chylomicrons is ApoB48.

<span class="mw-page-title-main">Apolipoprotein</span> Proteins that bind lipids to transport them in body fluids

Apolipoproteins are proteins that bind lipids to form lipoproteins. They transport lipids in blood, cerebrospinal fluid and lymph.

Hyperlipidemia is abnormally high levels of any or all lipids or lipoproteins in the blood. The term hyperlipidemia refers to the laboratory finding itself and is also used as an umbrella term covering any of various acquired or genetic disorders that result in that finding. Hyperlipidemia represents a subset of dyslipidemia and a superset of hypercholesterolemia. Hyperlipidemia is usually chronic and requires ongoing medication to control blood lipid levels.

<span class="mw-page-title-main">Apolipoprotein E</span> Cholesterol-transporting protein most notably implicated in Alzheimers disease

Apolipoprotein E (Apo-E) is a protein involved in the metabolism of fats in the body of mammals. A subtype is implicated in Alzheimer's disease and cardiovascular diseases. It is encoded in humans by the gene APOE.

<span class="mw-page-title-main">Apolipoprotein B</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein B (ApoB) is a protein that in humans is encoded by the APOB gene. Its measurement is commonly used to detect risk of atherosclerotic cardiovascular disease.

<span class="mw-page-title-main">Apolipoprotein C-II</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein C-II, or apolipoprotein C2 is a protein that in humans is encoded by the APOC2 gene.

<span class="mw-page-title-main">Apolipoprotein C-I</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein C-I is a protein component of lipoproteins that in humans is encoded by the APOC1 gene.

Lecithin cholesterol acyltransferase deficiency is a disorder of lipoprotein metabolism. The disease has two forms: Familial LCAT deficiency, in which there is complete LCAT deficiency, and Fish-eye disease, in which there is a partial deficiency.

<span class="mw-page-title-main">Apolipoprotein AI</span> Protein used in lipid metabolism

Apolipoprotein AI(Apo-AI) is a protein that in humans is encoded by the APOA1 gene. As the major component of HDL particles, it has a specific role in lipid metabolism.

<span class="mw-page-title-main">Apolipoprotein C-IV</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein C-IV, also known as apolipoprotein C4, is a protein that in humans is encoded by the APOC4 gene.

<span class="mw-page-title-main">Apolipoprotein D</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein D (ApoD) is a protein that in humans is encoded by the APOD gene. Unlike other lipoproteins, which are mainly produced in the liver, apolipoprotein D is mainly produced in the brain and testes. It is a 29 kDa glycoprotein discovered in 1963 as a component of the high-density lipoprotein (HDL) fraction of human plasma. It is the major component of human mammary cyst fluid. The human gene encoding it was cloned in 1986 and the deduced protein sequence revealed that ApoD is a member of the lipocalin family, small hydrophobic molecule transporters. ApoD is 169 amino acids long, including a secretion peptide signal of 20 amino acids. It contains two glycosylation sites and the molecular weight of the mature protein varies from 20 to 32 kDa.

<span class="mw-page-title-main">Hepatic lipase</span> Mammalian protein found in Homo sapiens

Hepatic lipase (HL), also called hepatic triglyceride lipase (HTGL) or LIPC (for "lipase, hepatic"), is a form of lipase, catalyzing the hydrolysis of triacylglyceride. Hepatic lipase is coded by chromosome 15 and its gene is also often referred to as HTGL or LIPC. Hepatic lipase is expressed mainly in liver cells, known as hepatocytes, and endothelial cells of the liver. The hepatic lipase can either remain attached to the liver or can unbind from the liver endothelial cells and is free to enter the body's circulation system. When bound on the endothelial cells of the liver, it is often found bound to heparan sulfate proteoglycans (HSPG), keeping HL inactive and unable to bind to HDL (high-density lipoprotein) or IDL (intermediate-density lipoprotein). When it is free in the bloodstream, however, it is found associated with HDL to maintain it inactive. This is because the triacylglycerides in HDL serve as a substrate, but the lipoprotein contains proteins around the triacylglycerides that can prevent the triacylglycerides from being broken down by HL.

<span class="mw-page-title-main">APOA5</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein A-V is a protein that in humans is encoded by the APOA5 gene on chromosome 11. It is significantly expressed in liver. The protein encoded by this gene is an apolipoprotein and an important determinant of plasma triglyceride levels, a major risk factor for coronary artery disease. It is a component of several lipoprotein fractions including VLDL, HDL, chylomicrons. It is believed that apoA-V affects lipoprotein metabolism by interacting with LDL-R gene family receptors. Considering its association with lipoprotein levels, APOA5 is implicated in metabolic syndrome. The APOA5 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">Apolipoprotein A-II</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein A-II is a protein that in humans is encoded by the APOA2 gene. It is the second most abundant protein of the high density lipoprotein particles. The protein is found in plasma as a monomer, homodimer, or heterodimer with apolipoprotein D. ApoA-II regulates many steps in HDL metabolism, and its role in coronary heart disease is unclear. Remarkably, defects in this gene may result in apolipoprotein A-II deficiency or hypercholesterolemia.

<span class="mw-page-title-main">APOA4</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein A-IV is plasma protein that is the product of the human gene APOA4.

<span class="mw-page-title-main">Microsomal triglyceride transfer protein</span> Large subunit of microsomal triglyceride transfer protein

Microsomal triglyceride transfer protein large subunit is a protein that in humans is encoded by the MTTP, also known as MTP, gene.

<span class="mw-page-title-main">APOM</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein M is an apolipoprotein and member of the lipocalin protein family that in humans is encoded by the APOM gene. It is found associated with high density lipoproteins and to a lesser extent with low density lipoproteins and triglyceride-rich lipoproteins. The encoded protein is secreted through the plasma membrane but remains membrane-bound, where it is involved in lipid transport. Two transcript variants encoding two different isoforms have been found for this gene, but only one of them has been fully characterized. It lacks an external amphipathic motif and is uniquely secreted to plasma without cleavage of its terminal signal peptide. The average molecular weight is 21253 Da, and the monoisotopic molecular weight is 21239 Da.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000110245 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032081 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Khetarpal SA, Zeng X, Millar JS, Vitali C, Somasundara AVH, Zanoni P, Landro JA, Barucci N, Zavadoski WJ, Sun Z, de Haard H, Toth IV, Peloso GM, Natarajan P, Cuchel M, Lund-Katz S, Phillips MC, Tall AR, Kathiresan S, DaSilva-Jardine P, Yates NA, Rader D (2017). "A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels". Nature Medicine . 23 (9): 1086–1094. doi:10.1038/nm.4390. PMC   5669375 . PMID   28825717.
  6. Vaith P, Assmann G, Uhlenbruck G (Jun 1978). "Characterization of the oligosaccharide side chain of apolipoprotein C-III from human plasma very low density lipoproteins". Biochimica et Biophysica Acta (BBA) - General Subjects. 541 (2): 234–40. doi:10.1016/0304-4165(78)90396-3. PMID   208636.
  7. Nicolardi S, van der Burgt YE, Dragan I, Hensbergen PJ, Deelder AM (May 2013). "Identification of new apolipoprotein-CIII glycoforms with ultrahigh resolution MALDI-FTICR mass spectrometry of human sera". Journal of Proteome Research. 12 (5): 2260–68. doi:10.1021/pr400136p. PMID   23527852. S2CID   19296928.
  8. Mendivil CO, Zheng C, Furtado J, Lel J, Sacks FM (Feb 2010). "Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins". Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (2): 239–45. doi:10.1161/ATVBAHA.109.197830. PMC   2818784 . PMID   19910636.
  9. Sundaram M, Zhong S, Bou Khalil M, Links PH, Zhao Y, Iqbal J, Hussain MM, Parks RJ, Wang Y, Yao Z (Jan 2010). "Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions". Journal of Lipid Research. 51 (1): 150–161. doi: 10.1194/M900346-JLR200 . PMC   2789775 . PMID   19622837.
  10. Sundaram M, Zhong S, Bou Khalil M, Zhou H, Jiang ZG, Zhao Y, Iqbal J, Hussain MM, Figeys D, Wang Y, Yao Z (Jun 2010). "Functional analysis of the missense APOC3 mutation Ala23Thr associated with human hypotriglyceridemia". Journal of Lipid Research. 51 (6): 1524–1534. doi: 10.1194/jlr.M005108 . PMC   3035516 . PMID   20097930.
  11. Qin W, Sundaram M, Wang Y, Zhou H, Zhong S, Chang CC, Manhas S, Yao EF, Parks RJ, McFie PJ, Stone SJ, Jiang ZG, Wang C, Figeys D, Jia W, Yao Z (Aug 2011). "Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-III results in impaired assembly and secretion of triacylglycerol-rich very low density lipoproteins: evidence that ApoC-III plays a major role in the formation of lipid precursors within the microsomal lumen". The Journal of Biological Chemistry. 286 (31): 27769–27780. doi: 10.1074/jbc.M110.203679 . PMC   3149367 . PMID   21676879.
  12. Singh P, Singh M, Kaur TP, Grewal SS (Nov 2008). "A novel haplotype in ApoAI-CIII-AIV gene region is detrimental to Northwest Indians with coronary heart disease". International Journal of Cardiology. 130 (3): e93–5. doi:10.1016/j.ijcard.2007.07.029. PMID   17825930.
  13. Singh P, Singh M, Gaur S, Kaur T (Jun 2007). "The ApoAI-CIII-AIV gene cluster and its relation to lipid levels in type 2 diabetes mellitus and coronary heart disease: determination of a novel susceptible haplotype". Diabetes & Vascular Disease Research. 4 (2): 124–29. doi:10.3132/dvdr.2007.030. PMID   17654446. S2CID   23793589. Open Access logo PLoS transparent.svg
  14. Qamar A, Khetarpal SA, Khera AV, Qasim A, Rader DJ, Reilly MP (2015). "Plasma apolipoprotein C-III levels, triglycerides, and coronary artery calcification in type 2 diabetics". Arteriosclerosis, Thrombosis, and Vascular Biology . 35 (8): 1880–1888. doi:10.1161/ATVBAHA.115.305415. PMC   4556282 . PMID   26069232.
  15. Sacks FM, Zheng C, Cohn JS (2011). "Complexities of plasma apolipoprotein C-III metabolism". Journal of Lipid Research . 52 (6): 1067–1070. doi: 10.1194/jlr.E015701 . PMC   3090227 . PMID   21421846.
  16. Petersen RF, Dufour S, Hariri A, Nelson-Williams C, Foo JN, Zhang XM, Dzjura J, Lifton RP, Shulman GI (2010). "Apoliprotein C3 Gene Variants in Nonalcoholic Fatty Liver Disease". New England Journal of Medicine. 362 (12): 1082–1089. doi:10.1056/NEJMoa0907295. PMC   2976042 . PMID   20335584.
  17. Richart C, August T, Terra X (2010). "Correspondence: Apolipoprotein C3 Gene Variants in Nonalcoholic Fatty Liver Disease". New England Journal of Medicine. 363 (2): 193–195. doi:10.1056/NEJMc1005265. PMID   20647217.
  18. Wang J, Ye C, Fei S (2020). "Association between APOC3 polymorphisms and non-alcoholic fatty liver disease risk: a Meta-Analysis". African Health Sciences. 20 (4). Makerere Medical School: 1800–1804. doi:10.4314/ahs.v20i4.34. PMC   8351815 . PMID   34394242.
  19. Chen BF, Chien Y, Tsai PH, Perng PC, Yang YP, Hsueh KC, Liu CH, Wang YH (2021). "A PRISMA-compliant meta-analysis of apolipoprotein C3 polymorphisms and nonalcoholic fatty liver disease". Journal of the Chinese Medical Association. 84 (10): 923–929. doi: 10.1097/JCMA.0000000000000564 . PMID   34108427.
  20. Peter A, Kantartzis K, Machicao F, Machann J, Wagner S, Templin S, Königsrainer I, Königsrainer A, Schick F, Fritsche A, Häring HU, Stefan N (2012). "Visceral obesity modulates the impact of apolipoprotein C3 Gene variants on liver fat content". International Journal of Obesity. 36 (6): 774–782. doi:10.1038/ijo.2011.154. PMID   21829161. S2CID   205154071.
  21. Stroes ES, Alexander VJ, Karwatowska-Prokopczuk E, Hegele RA, Arca M, Ballantyne CM, Soran H, Prohaska TA, Xia S, Ginsberg HN, Witztum JL, Tsimikas S, et al. (Balance Investigators) (2024). "Olezarsen, Acute Pancreatitis, and Familial Chylomicronemia Syndrome". New England Journal of Medicine. 390 (19): 1781–1792. doi:10.1056/NEJMoa2400201. PMID   38587247.
  22. Kypreos KE (2008). "ABCA1 Promotes the de Novo Biogenesis of Apolipoprotein CIII-Containing HDL Particles in Vivo and Modulates the Severity of Apolipoprotein CIII-Induced Hypertriglyceridemia". Biochemistry. 47 (39): 10491–10502. doi:10.1021/bi801249c. PMID   18767813.

Further reading