Baleen is a filter-feeding system inside the mouths of baleen whales. To use baleen, the whale first opens its mouth underwater to take in water. The whale then pushes the water out, and animals such as krill are filtered by the baleen and remain as a food source for the whale. Baleen is similar to bristles and consists of keratin, the same substance found in human fingernails, skin and hair. Baleen is a skin derivative. Some whales, such as the bowhead whale, have longer baleen than others. Other whales, such as the gray whale, only use one side of their baleen. These baleen bristles are arranged in plates across the upper jaw of whales.
Depending on the species, a baleen plate can be 0.5 to 3.5 m (1.6 to 11.5 ft) long, and weigh up to 90 kg (200 lb). Its hairy fringes are called baleen hair or whalebone hair. They are also called baleen bristles, which in sei whales are highly calcified, with calcification functioning to increase their stiffness. [1] [2] Baleen plates are broader at the gumline (base). The plates have been compared to sieves or Venetian blinds.
As a material for various human uses, baleen is usually called whalebone, which is a misnomer.
The word "baleen" derives from the Latin bālaena , related to the Greek phalaina – both of which mean "whale".
The oldest true fossils of baleen are only 15 million years old because baleen rarely fossilizes, but scientists believe it originated considerably earlier than that. [3] This is indicated by baleen-related skull modifications being found in fossils from considerably earlier, including a buttress of bone in the upper jaw beneath the eyes, and loose lower jaw bones at the chin. Baleen is believed to have evolved around 30 million years ago, possibly from a hard, gummy upper jaw, like the one a Dall's porpoise has; it closely resembles baleen at the microscopic level. The initial evolution and radiation of baleen plates is believed to have occurred during Early Oligocene when Antarctica broke off from Gondwana and the Antarctic Circumpolar Current was formed, increasing productivity of ocean environments. [4] This occurred because the current kept warm ocean waters away from the area that is now Antarctica, producing steep gradients in temperature, salinity, light, and nutrients, where the warm water meets the cold. [5]
The transition from teeth to baleen is proposed to have occurred stepwise, from teeth to a hybrid to baleen. It is known that modern mysticetes have teeth initially and then develop baleen plate germs in utero, but lose their dentition and have only baleen during their juvenile years and adulthood. However, developing mysticetes do not produce tooth enamel because at some point this trait evolved to become a pseudogene. This is likely to have occurred about 28 million years ago and proves that dentition is an ancestral state of mysticetes. Using parsimony to study this and other ancestral characters suggests that the common ancestor of aetiocetids and edentulous mysticetes evolved lateral nutrient foramina, which are believed to have provided blood vessels and nerves a way to reach developing baleen. Further research suggests that the baleen of Aetiocetus was arranged in bundles between widely spaced teeth. If true, this combination of baleen and dentition in Aetiocetus would act as a transition state between odontocetes and mysticetes. This intermediate step is further supported by evidence of other changes that occurred with the evolution of baleen that make it possible for the organisms to survive using filter feeding, such as a change in skull structure and throat elasticity. It would be highly unlikely for all of these changes to occur at once. Therefore, it is proposed that Oligocene aetiocetids possess both ancestral and descendant character states regarding feeding strategies. This makes them mosaic taxa, showing that either baleen evolved before dentition was lost or that the traits for filter feeding originally evolved for other functions. It also shows that the evolution could have occurred gradually because the ancestral state was originally maintained. Therefore, the mosaic whales could have exploited new resources using filter feeding while not abandoning their previous prey strategies. The result of this stepwise transition is apparent in modern-day baleen whales, because of their enamel pseudogenes and their in utero development and reabsorbing of teeth. [3]
If it is true that many early baleen whales also had teeth, these were probably used only peripherally, or perhaps not at all (again like Dall's porpoise, which catches squid and fish by gripping them against its hard upper jaw). Intense research has been carried out to sort out the evolution and phylogenetic history of mysticetes, but much debate surrounds this issue.
A whale's baleen plates play the most important role in its filter-feeding process. To feed, a baleen whale opens its mouth widely and scoops in dense shoals of prey (such as krill, copepods, small fish, and sometimes birds that happen to be near the shoals), together with large volumes of water. It then partly shuts its mouth and presses its tongue against its upper jaw, forcing the water to pass out sideways through the baleen, thus sieving out the prey, which it then swallows.
Whale baleen is the mostly mineralized keratin-based bio-material consisting of parallel plates suspended down the mouth of the whale. Baleen's mechanical properties of being strong and flexible made it a popular material for numerous applications requiring such a property (see Human uses section).
The basic structure of the whale baleen has been described as a tubular structure with a hollow medulla (inner core) enclosed by a tubular layer with a diameter varying from 60 to 900 microns, which had approximately 2.7 times higher calcium content than the outer solid shell. The elastic modulus in the longitudinal direction and the transverse direction are 270 megapascals (MPa) and 200 MPa, respectively. This difference in the elastic moduli could[ clarification needed ] be attributed to the way the sandwiched tubular structures are packed together.
Hydrated versus dry whale baleen also exhibit significantly different parallel and perpendicular compressive stress to compressive strain response. Although parallel loading for both hydrated and dry samples exhibit higher stress response (about 20 MPa and 140 MPa at 0.07 strain for hydrated and dry samples respectively) than that for perpendicular loading, hydration drastically reduced the compressive response. [6]
Crack formation is also different for both the transverse and longitudinal orientation. For the transverse direction, cracks are redirected along the tubules, which enhances the baleen's resistance to fracture and once the crack enters the tubule it is then directed along the weaker interface rather than penetrating through either the tubule or lamellae.
People formerly used baleen (usually referred to as "whalebone") for making numerous items where flexibility and strength were required, including baskets, backscratchers, collar stiffeners, buggy whips, parasol ribs, switches, crinoline petticoats, farthingales, busks, and corset stays. [7] It was commonly used to crease paper; its flexibility kept it from damaging the paper. It was also occasionally used in cable-backed bows. Synthetic materials are now usually used for similar purposes, especially plastic and fiberglass. Baleen was also used by Dutch cabinetmakers for the production of pressed reliefs. [8]
In the United States, the Marine Mammal Protection Act in 1972 makes it illegal "for any person to transport, purchase, sell, export, or offer to purchase, sell, or export any marine mammal or marine mammal product". [9]
Baleen serves as a habitat for some species from the gastropod families Pyropeltidae, Cocculinidae, Osteopeltidae, and Neolepetopsidae. [10]
Whales(Balaena) are a widely distributed and diverse group of fully aquatic placental marine mammals. As an informal and colloquial grouping, they correspond to large members of the infraorder Cetacea, i.e. all cetaceans apart from dolphins and porpoises. Dolphins and porpoises may be considered whales from a formal, cladistic perspective. Whales, dolphins and porpoises belong to the order Cetartiodactyla, which consists of even-toed ungulates. Their closest non-cetacean living relatives are the hippopotamuses, from which they and other cetaceans diverged about 54 million years ago. The two parvorders of whales, baleen whales (Mysticeti) and toothed whales (Odontoceti), are thought to have had their last common ancestor around 34 million years ago. Mysticetes include four extant (living) families: Balaenopteridae, Balaenidae, Cetotheriidae, and Eschrichtiidae. Odontocetes include the Monodontidae, Physeteridae, Kogiidae, and Ziphiidae, as well as the six families of dolphins and porpoises which are not considered whales in the informal sense.
Rorquals are the largest group of baleen whales, which comprise the family Balaenopteridae, containing ten extant species in three genera. They include the largest animal that has ever lived, the blue whale, which can reach 180 tonnes, and the fin whale, which reaches 120 tonnes ; even the smallest of the group, the northern minke whale, reaches 9 tonnes.
Baleen whales, also known as whalebone whales, are a parvorder of carnivorous marine mammals of the infraorder Cetacea which use keratinaceous baleen plates in their mouths to sieve planktonic creatures from the water. Mysticeti comprises the families Balaenidae, Balaenopteridae (rorquals), Eschrichtiidae and Cetotheriidae. There are currently 16 species of baleen whales. While cetaceans were historically thought to have descended from mesonychians, molecular evidence instead supports them as a clade of even-toed ungulates (Artiodactyla). Baleen whales split from toothed whales (Odontoceti) around 34 million years ago.
Filter feeders are a sub-group of suspension feeding animals that feed by straining suspended matter and food particles from water, typically by passing the water over a specialized filtering structure. Some animals that use this method of feeding are clams, krill, sponges, baleen whales, and many fish. Some birds, such as flamingos and certain species of duck, are also filter feeders. Filter feeders can play an important role in clarifying water, and are therefore considered ecosystem engineers. They are also important in bioaccumulation and, as a result, as indicator organisms.
The evolution of cetaceans is thought to have begun in the Indian subcontinent from even-toed ungulates (Artiodactyla) 50 million years ago (mya) and to have proceeded over a period of at least 15 million years. Cetaceans are fully aquatic marine mammals belonging to the order Artiodactyla and branched off from other artiodactyls around 50 mya. Cetaceans are thought to have evolved during the Eocene, the second epoch of the present-extending Cenozoic Era. Molecular and morphological analyses suggest Cetacea share a relatively recent closest common ancestor with hippopotami and that they are sister groups. Being mammals, they surface to breathe air; they have 5 finger bones (even-toed) in their fins; they nurse their young; and, despite their fully aquatic life style, they retain many skeletal features from their terrestrial ancestors. Research conducted in the late 1970s in Pakistan revealed several stages in the transition of cetaceans from land to sea.
Janjucetus is an extinct genus of cetacean, and a basal baleen whale (Mysticeti), from the Late Oligocene around 25 million years ago (mya) off south-east Australia, containing one species J. hunderi. Unlike modern mysticetes, it possessed large teeth for gripping and shredding prey, and lacked baleen, and so was likely to have been a predator that captured large single prey animals rather than filter feeding. However, its teeth may have interlocked, much like those of the modern-day filter-feeding crabeater seal, which would have allowed some filter-feeding behaviour. Its hunting behaviour was probably similar to the modern-day leopard seal, probably eating large fish. Like baleen whales, Janjucetus could not echolocate; however, it did have unusually large eyes, and so probably had an acute sense of vision. The only specimen was found on the Jan Juc beach, where the remains of the extinct whales Mammalodon, Prosqualodon and Waipatia have also been discovered.
Mammalodon is an extinct genus of archaic baleen whale belonging to the family Mammalodontidae.
Mammalodontidae is a family of extinct whales known from the Oligocene of Australia and New Zealand.
Aetiocetus is a genus of extinct basal mysticete, or baleen whale that lived 33.9 to 23.03 million years ago, in the Oligocene in the North Pacific ocean, around Japan, Mexico, and Oregon, U.S. It was first described by Douglas Emlong in 1966 and currently contains known four species, A. cotylalveus, A. polydentatus, A. tomitai, and A. weltoni. These whales are remarkable for their retention of teeth and presence of nutrient foramina, indicating that they possessed baleen. Thus, Aetiocetus represents the transition from teeth to baleen in Oligocene mysticetes. Baleen is a highly derived character, or synapomorphy, of mysticetes, and is a keratinous structure that grows from the palate, or roof of the mouth, of the whale. The presence of baleen is inferred from the fossil record in the skull of Aetiocetus. Aetiocetus is known from both sides of the Pacific Ocean: it was first documented in Oregon, United States, but it is also known from Japan and Mexico. The genus is currently constrained to the Northern hemisphere and has little value in biostratigraphic studies of the Oligocene due to its limited occurrences across the Pacific.
Ashorocetus is a monotypic genus of an extinct primitive baleen whale of the family Aetiocetidae. It was named by Barnes et al. 1995, and contains one species, A. eguchii. Fossils of this whale are found from the Chattian Morawan formation, near Ashoro, of upper Oligocene Hokkaido, Japan. Ashorocetus eguchii was described based on a partial skull and is named after the type locality and Kenichiro Eguchi of the Ashoro Museum of Paleontology.
A tooth is a hard, calcified structure found in the jaws of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tearing food, for defensive purposes, to intimidate other animals often including their own, or to carry prey or their young. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of multiple tissues of varying density and hardness that originate from the outermost embryonic germ layer, the ectoderm.
Eomysticetus is an extinct genus of baleen whale from the late Oligocene (Chattian) Chandler Bridge Formation of South Carolina.
Llanocetus is a genus of extinct toothed baleen whales from the Late Eocene of Antarctica. The type species, Llanocetus denticrenatus, reached gigantic proportions, with the juvenile specimen reaching an estimated 8 m (26 ft) in length; a second, unnamed species, known only from three isolated premolar teeth, reached an estimated total body length of up to 12 m (39 ft). Like other contemporary baleen whales of the Eocene, Llanocetus completely lacked baleen in its jaws. It was probably a suction feeder like the modern beaked and pygmy right whales.
Eomysticetidae is a family of extinct mysticetes belonging to Chaeomysticeti. It is one of two families in the basal chaeomysticete clade Eomysticetoidea.
Aetiocetidae is an extinct family of toothed baleen whales known from the Oligocene. The whales are from the North Pacific Ocean and ranged in size from 3 to 8 metres long. Many of the described specimens were discovered from the Upper Oligocene of the Japanese Morawan Formation, the largest known one from the Morawan's Upper tuffaceous siltstone. Other formally described extinct toothed mysticetis from this time are smaller, from 3 to 4 metres in length. Mysticeti with true baleen are seen in fossils from the Upper Oligocene. The monophyly of the family is still uncertain, as are the evolutionary relationship between the early toothed baleen whales and the early and extant edentulous baleen whales. However, the cladistic analyses of Coronodon and Mystacodon seem to indicate that Aetiocetidae and Llanocetidae are more closely related to crown Mysticeti than to Mammalodontidae, Coronodon, and Mystacodon.
Ceratodontes or cornudentes are structures consisting of keratin, located in the mouth cavity, which functionally serve as teeth. They develop, unlike osseous teeth, through cornification of the epithelium of the oral mucosa.
Mystacodon is a genus of toothed baleen whale from the Late Eocene Yumaque Member of Paracas Formation of the Pisco Basin in southwestern Peru. It is the oldest known baleen whale, and was probably a suction feeder of small prey on the seafloor.
Coronodon is a genus of toothed (transitional) baleen whales from the Early Oligocene Ashley and Chandler Bridge formations of South Carolina. The genus contains three species: the type species C. havensteini, and additional species C. newtonorum and C. planifrons.
Ankylorhiza is an extinct genus of toothed whale that lived in what is now the United States during the Oligocene epoch, between 29 and 23.5 million years ago. The type and only known species is A. tiedemani, though two fossil skeletons may represent an additional, second species within the genus. Ankylorhiza was about 4.8 meters (16 ft) long, with a long, robust skull bearing conical teeth that were angled forwards at the tip of the snout.