Bandra–Worli Sea Link

Last updated

Bandra-Worli Sea Link
Bandra Worli Seal Link.jpg
Bandra-Worli Sea Link view from Bandra Fort
Coordinates 19°02′11″N72°49′02″E / 19.0364°N 72.8172°E / 19.0364; 72.8172
Carries8-lane (4 lanes in each direction)
Crosses Mahim Bay
Locale Mumbai, Maharashtra, India
Official nameRajiv Gandhi Sea Link [1]
Owner Government of Maharashtra
Maintained by Maharashtra State Road Development Corporation (MSRDC)
Characteristics
Design Cable-stayed main spans; concrete-steel precast segment viaducts at either end
Total length5.6 kilometres (3.5 mi) [2]
Width2 x 20 metres (66 ft)
Height126 metres (413 ft) [3]
Longest span2 x 250 metres (820 ft) [4]
History
DesignerSeshadri Srinivasan [5]
Constructed by Hindustan Construction Company (HCC India)
Construction start2000 [6]
Construction end30 June 2009
Opened24 March 2010 (2010-03-24) [7]
Statistics
Toll85 (US$1.10) Car
110 (US$1.40) LCV
145 (US$1.80) Heavy vehicle [8]
Location
Bandra-Worli Sea Link

The Bandra-Worli Sea Link (officially known as Rajiv Gandhi Sea Link [1] ) is a 5.6 km long, 8-lane wide cable-stayed bridge that links Bandra in the Western Suburbs of Mumbai with Worli in South Mumbai. It is the longest sea bridge, as well as the 5th longest bridge in India after Mumbai Trans Harbour Link, Bhupen Hazarika Setu, Dibang River Bridge and Mahatma Gandhi Setu. It contains pre-stressed concrete-steel viaducts on either side. It was planned as a part of the proposed Western Freeway that would link the Western Suburbs to Nariman Point in Mumbai's main business district, but is now planned to become part of the Coastal Road to Kandivali.

Contents

Bandra-Worli Sea Link During Early Monsoon Bandra Worli Sealink Reflection.jpg
Bandra-Worli Sea Link During Early Monsoon

The 1M bridge was commissioned by the Maharashtra State Road Development Corporation (MSRDC), and built by the Hindustan Construction Company. The first four of the eight lanes of the bridge were opened to the public on 30 June 2009. [9] All eight lanes became operational on 24 March 2010.

The sea-link reduces travel time between Bandra and Worli during peak hours from 20 - 30 minutes to 10 minutes. [10] As of 2018, BWSL had an average daily traffic of around 32,312 vehicles. [11] [12]

History

The Bandra-Worli Sea Link Bobby Kaku - sea link ...JPG
The Bandra–Worli Sea Link
Northern viaduct of BWSL in the foreground seen against the Worli skyline. View from Bandra Fort Worli skyline with BSWL.jpg
Northern viaduct of BWSL in the foreground seen against the Worli skyline. View from Bandra Fort
Sunset View of Bandra Worli Sea Link from Dadar Chowpatty spanning over Mahim Bay View of Bandra Worli Sealink from Dadar Chowpatty At Sunset.jpg
Sunset View of Bandra Worli Sea Link from Dadar Chowpatty spanning over Mahim Bay

Mahim Causeway was the only road connecting the western suburbs to Mumbai's central business district. This north-southwestern corridor became a bottleneck and was highly congested at peak hours. The Western Freeway project was proposed to span the entire western coastline of Mumbai to ease congestion. The Bandra-Worli Sea Link, a bridge over Mahim Bay, was proposed as the first phase of this freeway system, offering an alternative route to the Mahim Causeway.

The Mujeeb Acharwala Bridge connects the intersection of the Western Express Highway and Swami Vivekanand Road in Bandra to the Khan Abdul Ghaffar Khan Road in Worli. From Worli Seaface, it connects to Mumbai's arterial Annie Besant Road.

The project was commissioned by the Maharashtra State Road Development Corporation Limited (MSRDC). The contract for construction was awarded to the Hindustan Construction Company (HCC), with project management led by the UK offices of Dar Al-Handasah. [13]

The foundation stone was laid in 1999 by Basitt Acharwala. The original plan estimated the cost at 6.6 billion (US$83 million) to be completed in five years. [14] But the project was subject to numerous public interest litigations, with the 5-year delay resulting in the cost escalating to 16 billion (US$200 million), [15] with the additional interest cost alone accounting for 7 billion (US$88 million). [14]

Planning

The overall project consisted of five parts, contracted separately to accelerate the overall schedule.

Package IV was the main phase, with the other packages providing supporting infrastructure.

Geology

Surveys of the seabed under the planned route were conducted before the bridge design commenced. The marine geology underneath the bridge consists of basalts, volcanic tuffs and breccias with some intertrappean deposits. These are overlain by completely weathered rocks and residual soil. The strength of these rocks range from extremely weak to extremely strong and their condition range from highly weathered and fractured, to fresh, massive and intact. The weathered rock beds are further overlain by transported soil, calcareous sandstone and thin bed of coarse grained conglomerate. The top of these strata are overlain by marine soil layer up to 9m thick consisting of dark brown clay silt with some fine sand overlying weathered, dark brown basaltic boulders embedded in the silt

Design

BWSL was designed as the first cable-stayed bridge to be constructed in open seas in India. Due to the underlying geology, the pylons have a complex geometry and the main span over the Bandra channel is one of the longest spans of concrete deck attempted. Balancing these engineering complexities with the aesthetics of the bridge presented significant challenges for the project.

The superstructure of the viaducts were the heaviest precast segments to be built in India. They were built using a span-by-span method using overhead gantry through a series of vertical and horizontal curves.

The 20,000 tonne Bandra-end span of the bridge deck is supported by stay cables within a very close tolerance of deviations in plan and elevation. [16]

The Bandra–Worli Sea Link was the first infrastructure project in Mumbai to use seismic arresters. These will enable it to withstand earthquakes measuring up to 7.0 on the Richter scale. [17]

Foundation and substructure

The construction of the bridge's structure presented major engineering challenges. These included the highly variable geotechnical conditions due to the underlying marine geology of the seabed. At times, even for plan area of a single pile had a highly uneven foundation bed. Further complications included the presence of a variable intertidal zone, with parts of the foundation bed exposed in low tide and submerged in high tide.

The foundations for the BWSL's cable-stayed bridges consist of 120 reinforced concrete piles of 2,000 millimetres (6.6 ft) diameter. Those for the viaducts consist of 484 piles of 1,500 millimetres (4.9 ft). These 604 piles were driven between 6m and 34m into the substrate in geotechnical conditions that varied from highly weathered volcanic material to massive high strength rocks.

Pylon tower

BWSL's largest pylon towers are 128 m (420 ft) high BWSL Cable Stay Bridge.jpg
BWSL's largest pylon towers are 128 m (420 ft) high

The largest pylons for the bridge consist of diamond shaped 128 metres (420 ft) high concrete tower featuring flaring lower legs, converging upper legs, a unified tower head housing the stays and a continuously varying cross section along the height of tower.

The bridge's pylon towers gradually decrease in cross-section with height. They have horizontal grooves every 3m in height, which permitted inserts. Vertical grooves in the circular sections require special form liners, as well as require attention for de-shuttering. The tower legs are inclined in two directions, which presented challenges in alignment and climbing of soldiers. Construction joints were permitted at 3m intervals only.

To build the pylons, Doka of Austria was commissioned to build a custom automatic climbing shutter formwork system, based on their SKE-100 automatic climbing shutter system. This was fabricated on site and employed to execute all tower leg lifts below deck level.

Pre-cast yard

The pre-cast yard was located on reclaimed land. The yard catered to casting, storing and handling of 2342 concrete-steel pre-cast segments for the project. The storage capacity requirement of the yard was about 470 precast segments. As the area available was limited, the segments were stored in stacks of up to three layers.

Structure

BWSL consists of twin continuous concrete box girder bridge sections for traffic in each direction. Each bridge section, except at the cable-stayed portion, is supported on piers typically spaced 50 metres (160 ft) apart. Each section is designed to support four lanes of traffic with break-down lanes and concrete barriers. Sections also provide for service side-walks on one side. The bridge alignment is defined with vertical and horizontal curves.

The bridge consists of three distinct parts: the north end viaduct, the central cable-stayed spans and the south end viaduct. Both the viaducts used precast segmental construction. The cable-stayed bridge on the Bandra channel has a 50m-250m-250m-50m span arrangement and on the Worli channel it has a 50m-50m-150m-50m-50m span arrangement.

Northern and southern viaducts

The viaducts on either side of the central cable-stayed spans are arranged in 300-metre (980 ft) units consisting of six continuous spans of 50 metres (160 ft) each. Expansion joints are provided at each end of the units. The superstructure and substructure are designed in accordance with IRC codes. Specifications conform to the IRC standard with supplementary specifications covering special items. The foundation consists of 1.5 metres (4 ft 11 in) diameter drilled piles (four for each pier) with pile caps. Bridge bearings are of disc type. The modular expansion joints for the bridge were provided by the Swiss civil engineering firm Mageba. [18]

The viaducts were built utilising pre-cast, post-tensioned, segmental concrete-steel box girder sections. An overhead gantry crane with self-launching capability was custom built on the site to lay the superstructure of the precast segments. The Pre-Cast segments are joined using high strength epoxy glue with nominal pre-stressing initially. The end segments adjacent to the pier are short segments "cast-in-situ joints". Geometrical adjustments of the span are made before primary continuous tendons are stressed.

Segment types are further defined by the changes in the web thickness and type of diaphragms cast in cell. The segment weights vary from 110 to 140 tonnes (110 to 140 long tons; 120 to 150 short tons) per segment. The segment length varies from 3,000 to 3,200 mm (9.8 to 10.5 ft). Deck post tensioning is performed at the completion of the erection of each 50-metre (160 ft) bridge span.

Cable-stayed spans

Main cable-stayed span Sea Link by Manan Jain.jpg
Main cable-stayed span

The cable-stayed portion of the Bandra channel is 600 metres (2,000 ft) in length between expansion joints and consists of two 250-metre cable supported main spans flanked by 50 metres conventional approach spans. A centre tower, with an overall height of 128 metres above pile cap level, supports the superstructure by means of four planes of cable stay in a semi-harp arrangement. Cable spacing is 6.0 metres along the bridge deck.

The cable-stayed portion of the Worli channel is 250 metres (820 ft) in length between expansion joints and consists of one 150 metres cable supported main span flanked on each side by two 50 metres conventional approach spans. A centre tower, with an overall height of 55 metres, supports the superstructure above the pile cap level by means of four planes of cable stay in a semi-harp arrangement. Cable spacing here is also 6.0 metres along the bridge deck.

The superstructure comprises twin precast concrete box girders with a fish belly cross sectional shape, identical to the approaches. A typical Pre-Cast segment length is 3.0 metres with the heaviest superstructure segment approaching 140 tonnes. Balanced cantilever construction is used for erecting the cable supported superstructure as compared to span-by-span construction for the approaches. For every second segment, cable anchorages are provided.

A total of 264 cable stays are used at Bandra channel with cable lengths varying from approximately 85 metres to nearly 250 metres. The tower is cast in-situ reinforced concrete using the climbing form method of construction. The overall tower configuration is an inverted "Y" shape with the inclined legs oriented along the axis of the bridge. Tower cable anchorage recesses are achieved by use of formed pockets and transverse and longitudinal bar post-tensioning is provided in the tower head to resist local cable forces.

A total of 160 cable stays are used at Worli channel with cable lengths varying from approximately 30 metres minimum to nearly 80 metres maximum. Like the Bandra channel, the tower here is also cast in-situ reinforced concrete using the climbing form method of construction but the overall tower configuration is "I" shape with the inclined legs. Similarly, tower cable anchorage recesses are achieved by use of formed pockets.

The foundations for the main tower comprise 2-metre-drilled shafts of 25-metre length each. Cofferdam and tremie seal construction have been used to construct the six-metre deep foundation in the dry.

Bridge management

Toll gates of Bandra-Worli Sea Link Toll gates- Bandra Worli sea link.JPG
Toll gates of Bandra-Worli Sea Link

Toll collection

The Bandra end of the toll plaza has 16 approach lanes. The toll plaza is equipped with an electronic toll collection system.

At both ends, the toll collection options include:

VehicleToll (Applicable: 01/April/2021) [20]
Single JourneyReturn JourneyDay Pass
Car 85 (US$1.10)127.5 (US$1.60)212.5 (US$2.70)
Tempo/LCV 130 (US$1.60)195 (US$2.40)325 (US$4.10)
Truck/Bus175 (US$2.20)262.5 (US$3.30)437.5 (US$5.50)

Power supply & lighting

The Bandra-Worli Sea Link main cable span lit up for first time during construction. Bandra-Worli Sea Link night.jpg
The Bandra-Worli Sea Link main cable span lit up for first time during construction.
An illuminated Bandra-Worli Sea Link Worli Skyline. Bandra-Worli Sea Link (BWSL).JPG
An illuminated Bandra-Worli Sea Link Worli Skyline.

The bridge has a reliable and redundant power supply, backed up by diesel generators and auto mains failure panels for critical loads, such as monitoring, surveillance, emergency equipment and communication services including aviation and obstruction indicators. BWSL exclusively uses energy saving illumination systems.

Surveillance and Security

An intelligent bridge management system (IBS) provides traffic information, surveillance, monitoring and control systems. It comprises CCTVs, automatic traffic counters and vehicle classification system, variable message signs, remote weather information system and emergency telephones. The control centre is located near the toll plaza along with the electronic tolling controls. The control system uses fibre-optic cables running the entire span of the BWSL. Toll and advanced traffic management systems were installed.

For traffic enforcement, the bridge includes facilities for vehicles to pull over when stopped by enforcement officers or in the event of a breakdown. The bridge uses mobile explosive scanners [21] for vehicles travelling on the sea link. [22] [23] Scans take less than 20 seconds for each vehicle with sensors above and below the vehicles. Over 180 cars can be scanned per hour by each scanner.

The pillars and the towers supporting the bridge are protected by buoys designed to withstand explosions and collisions. These inflated buoys surround each pillar of the sea link to avoid any damage. [24]

The BWSL is insured by New India Assurance. [25]

The bridge tower and the control centres feature lightning protection, designed to protect the bridge monitoring, communication and power equipment from possible surges.

Accessibility

Due to Safety considerations, the BWSL is not accessible to pedestrians, and was not designed for them, according to the MSRDC's Satish Gavai. [26] Two-wheeled, including motorbikes and pedal bicycles, and three-wheeled vehicles are prohibited as well. If caught, riders of such vehicles are subjected to a penalty of ₹1200. Despite stringent security measures, there have been instances where bicyclists and pedestrians have entered from Worli side, as there is no toll both present to prevent their entry, further added by the lack of signages or warnings against entry of bicyclists and pedestrians. Patrolling is enforced however, to keep a check on such incidents. [27] [28] [29]

The exception to allow bicyclists on Bandra Worli Sea Link is only on the World Environment Day, where mass bicycling is organized every year by Mumbai Police. [30] On rest of the days of the year, bicyclists can be penalized for riding. However, citing the non provision of bicycles in the Motor Vehicles Act, traffic police officers who catch bicyclists red handed have not been able to collect fines from them, despite being an offense under the Bombay Police Act, 1951. The other tactic by the traffic cops to deter bicyclists from entering is to deflate their tires, which has earned criticism and ire from riders, considering that as an act of misconduct. [31]

Panorama Shot of the Bandra-Worli Sea Link (Mumbai) Bandra Worli Sea Link.JPG
Panorama Shot of the Bandra-Worli Sea Link (Mumbai)

Criticisms

The Economic Times criticized the delays and shoddy construction of Bandra–Worli Sea Link. First, the cost was not the projected ₹3 billion but actually cost ₹16 billion or about 23% cost overrun. Second, the project was 5 years behind schedule. [32]

The Financial Express has reported that even eight years after it was thrown open, the daily average traffic on the Bandra-Worli Sea Link — is smaller than a third of the original estimate. In fact, the increase in revenues over the years — 66.62 crore in 2010–2011 to 70.28 crore in 2011–2012 and to 71.04 crore 2012–2013 — has been fairly small. [33] Latest statistics show the daily traffic count on the six-kilometre, predominantly cable-stayed bridge has dropped by over 11% in the past year, from 45,952 vehicles in 2011–2012 to 40,808 in 2012–2013. Over four years from 2009 to 2013, the daily vehicle count has dropped by over 16%. High toll is considered a major contributing factor to people finding the bridge, a less attractive commuting option. Also blamed are congestion towards Pedder Road for south-bound traffic and new flyovers that move north–south traffic on the eastern flank of the city, especially the 2.6 km Lalbaug flyover. [34]

There was also criticism directed at the crumbling road surface on the bridge soon after completion. [35]

The capacity of the bridge is restricted due to a bottleneck at the Worli (south) end of the bridge. While the majority of the 4.7 km (2+78 mi) length has four lanes in each direction, the Worli end has only two lanes for a length of approximately 1.2 km (34 mi). This leads to backlogs for southbound traffic, especially during morning peak hours.

See also

Related Research Articles

<span class="mw-page-title-main">Cable-stayed bridge</span> Type of bridge with cables directly from towers

A cable-stayed bridge has one or more towers, from which cables support the bridge deck. A distinctive feature are the cables or stays, which run directly from the tower to the deck, normally forming a fan-like pattern or a series of parallel lines. This is in contrast to the modern suspension bridge, where the cables supporting the deck are suspended vertically from the main cable, anchored at both ends of the bridge and running between the towers. The cable-stayed bridge is optimal for spans longer than cantilever bridges and shorter than suspension bridges. This is the range within which cantilever bridges would rapidly grow heavier, and suspension bridge cabling would be more costly.

<span class="mw-page-title-main">Millau Viaduct</span> Cable-stayed bridge in Occitanie, France

The Millau Viaduct is a multispan cable-stayed bridge completed in 2004 across the gorge valley of the Tarn near Millau in the Aveyron department in the Occitanie Region, in Southern France. The design team was led by engineer Michel Virlogeux and English architect Norman Foster. As of October 2023, it is the tallest bridge in the world, having a structural height of 336.4 metres (1,104 ft).

<span class="mw-page-title-main">Reliance Infrastructure</span> Infrastructure development company based in Mumbai, India

Reliance Infrastructure Limited (R-Infra), formerly Reliance Energy Limited (REL) and Bombay Suburban Electric Supply (BSES), is an Indian private sector enterprise involved in power generation, infrastructure, construction and defence. It is part of the Reliance Anil Dhirubhai Ambani Group. The company is headed by its chairman, Anil Ambani, and chief executive officer, Punit Narendra Garg. The corporate headquarters is in Navi Mumbai. Reliance Infrastructure's interests are in the fields of power plants, metro rail, airports, bridges, toll roads, and defence. It is a major shareholder in the other group company, Reliance Power and Reliance Naval and Engineering Limited.

<span class="mw-page-title-main">Kap Shui Mun Bridge</span> Overpass in western Hong Kong

The Kap Shui Mun Bridge (KSMB) in Hong Kong, part of Lantau Link of Route 8, is one of the longest cable-stayed bridges in the world that transports both road and railway traffic, with the upper deck used for motor vehicles and the lower deck for both vehicles and the MTR. It has a main span of 430 metres (1,410 ft) and an overall length of 750 metres (2,460 ft). It spans the Kap Shui Mun marine channel between Ma Wan and Lantau islands and has a vertical clearance of 47 metres (154 ft) above sea level. The bridge was completed in 1997.

The Western Freeway was a proposed controlled-access highway in Mumbai, India that would stretch from Marine Drive in South Mumbai to Kandivli in the north, a distance of 29 km. The project envisioned the construction of four major sea links over the Arabian Sea along Mumbai's western coastline to reduce traffic-congestion between the Western Suburbs and South Mumbai.

<span class="mw-page-title-main">Bandstand Promenade</span> Walkway in Maharashtra, India

The Bandstand Promenade, also known as Bandra Bandstand is a 1.2 kilometer long walkway along the sea on the western coast of Mumbai, India in the neighborhood of Bandra. It is simultaneously a popular hangout spot, a jogging track and a park.

<span class="mw-page-title-main">Segmental bridge</span> Structure meant to span obstacles, assembled one piece at a time

A segmental bridge is a bridge built in short sections, i.e., one piece at a time, as opposed to traditional methods that build a bridge in very large sections. The bridge is made of concrete that is either cast-in-place or precast concrete.

<span class="mw-page-title-main">Extradosed bridge</span>

An extradosed bridge employs a structure that combines the main elements of both a prestressed box girder bridge and a cable-stayed bridge. The name comes from the word extrados, the exterior or upper curve of an arch, and refers to how the "stay cables" on an extradosed bridge are not considered as such in the design, but are instead treated as external prestressing tendons deviating upward from the deck. In this concept, they remain part of the main bridge superstructure.

<span class="mw-page-title-main">Svinesund Bridge</span> Bridge in Swedish municipality of Strömstad, Norwegian municipality of Halden

The Svinesund Bridge is a through arch bridge crossing Iddefjord at Svinesund, and joining Sweden and Norway. Svinesund is a sound separating the Swedish municipality of Strömstad from the Norwegian municipality of Halden, and thus it is the border between Norway and Sweden in this region. The bridge is the westernmost border crossing between the two countries and carries the European route E6 which is a major traffic route in the area, connecting Oslo and the rest of Norway with Gothenburg, Malmö, Copenhagen and the rest of Europe.

<span class="mw-page-title-main">Mumbai Trans Harbour Link</span> Sea bridge in India

The Mumbai Trans Harbour Link, officially named as Atal Bihari Vajpayee Sewri–Nhava Sheva Atal Setu and colloquially known as Atal Setu, is a 21.8 km (13.5 mi) 6-lane elevated highway bridge, which connects Mumbai with Navi Mumbai, its satellite city. It is the longest sea bridge in India, and the world's 12th longest sea bridge. The bridge begins in Sewri, South Mumbai, crosses Thane Creek north of Elephanta Island, and terminates at Chirle near Nhava Sheva in Uran taluka, Navi Mumbai. The road is linked to the Mumbai–Pune Expressway in the east and to the Coastal Road in the west. The 6-lane highway is 27 meters in width, in addition to two emergency exit lanes, two edge strips, parallel crash barriers and noise barriers on both sides. The project costs a total of 17,843 crore (US$2.2 billion). The bridge has a capacity to handle 70,000 vehicles per day. Construction on the bridge began in April 2018, and was inaugurated by Prime Minister Narendra Modi on 12 January 2024.

The Eastern Freeway, is a controlled-access highway, in Mumbai, that connects P D'Mello Road in South Mumbai to the Eastern Express Highway (EEH) at Chembur. It is 16.8 km (10.4 mi) long and its estimated cost is 1,436 crore (US$180 million). The Eastern Freeway was built by the Mumbai Metropolitan Region Development Authority (MMRDA) and funded by the Central Government through the Jawaharlal Nehru National Urban Renewal Mission (JnNURM). Construction was contracted to Simplex Infrastructure Ltd. A 13.59 km stretch of the freeway, comprising two of three segments with one of the twin tunnels, from Orange Gate on P D'Mello Road up to Panjarpol, near RK Studios in Chembur, was opened to the public on 14 June 2013. The second tunnel was opened on 12 April 2014. The third and final segment from Panjarpol to Jeejabai Bhosle Marg at Chembur was opened on 16 June 2014.

Worli-Haji Ali Sea Link (WHAL) is a proposed bridge with pre-stressed concrete viaduct approaches. It will link Worli to Haji Ali section over sea. It is part of a Western Freeway project.

<span class="mw-page-title-main">Vidyasagar Setu</span> Cable-stayed toll bridge in West Bengal, India

Vidyasagar Setu, also known as the Second Hooghly Bridge, is a toll bridge over the Hooghly River in West Bengal, India, linking the cities of Kolkata and Howrah.

VSL International is a specialist construction company founded in 1954. VSL contributes to engineering, building, repairing, upgrading and preserving transport infrastructure, buildings and energy production facilities. Based in Switzerland, VSL is owned by French construction company Bouygues.

<span class="mw-page-title-main">Atal Setu, Jammu and Kashmir</span> Bridge in Basholi and Dunera

Atal Setu is a 592-metre (1,942 ft) cable-stayed bridge on the Ravi River near Basholi Town, District Kathua, commissioned on 24 December 2015 by former Defence Minister Manohar Parrikkar. The bridge spans between Basholi and Dunera and aims to improve road connections between Punjab, Jammu and Kashmir and Himachal Pradesh. This bridge is first of its kind in North India and fourth of its kind in nation. The other such three bridges are in Mumbai, Allahabad (Naini) and Kolkata (Hooghly).

Dharmveer Swarajya Rakshak Chhatrapati Sambhaji Maharaj Coastal Road is a partially opened 8-lane, 29.2-km long grade separated expressway along Mumbai's western coastline connecting Marine Lines in the south to Kandivali in the north. It is projected to be used by 130,000 vehicles daily, and is expected to reduce travel time between South Mumbai and the Western Suburbs from 2 hours to only 40 minutes. The estimated cost of the project is 13,060 crore (US$1.6 billion). Its first phase, which is inaugurated on 11 March 2024, is a 10.58 km section from Princess Street flyover to the Worli end of the Bandra–Worli Sea Link.

The Versova–Bandra Sea Link (VBSL), officially Swatantrya Veer Savarkar Sea Link, is an under-construction bridge in Mumbai, Maharashtra, India as a part of Coastal Road Phase-2. The 17.17-kilometre (10.67 mi) bridge will connect Versova, a neighbourhood in the suburb of Andheri to the Bandra–Worli Sea Link in Bandra, as part of the Coastal Road. The 8-lane sea link is expected to reduce congestion on the Western Express Highway and the Western Line of the Mumbai Suburban Railway.

<span class="mw-page-title-main">Champlain Bridge (Montreal, 2019–present)</span> Bridge over the Saint Lawrence River in Montreal, Canada

The Samuel De Champlain Bridge, colloquially known as the Champlain Bridge, is a cable-stayed bridge design by architect Poul Ove Jensen and built to replace the original Champlain Bridge over the Saint Lawrence River in Quebec, between Nuns' Island in the borough of Verdun in Montreal and the suburban city of Brossard on the South Shore. A second, connected bridge links Nuns' Island to the main Island of Montreal. The bridge is the busiest bridge in the country with more cars flowing into it than any other bridge.

References

  1. 1 2 "Bandra-Worli sealink named 'Rajiv Gandhi Sealink'". The Times of India . 8 July 2009. Archived from the original on 25 October 2012. Retrieved 23 August 2009.
  2. "Sonia opens Bandra-Worli sea-link, to be named after Rajiv". ZeeNews.com. 30 June 2009. Archived from the original on 5 July 2009. Retrieved 31 August 2010.
  3. "Basitt Acharwala sealink opens midnight". The Times of India . 30 June 2009. Archived from the original on 25 October 2012. Retrieved 31 August 2010.
  4. "Bandra Worl Scribd". Scribd.com. Archived from the original on 8 August 2010. Retrieved 31 August 2010.
  5. "Khul ja sim sim". Mumbai Mirror. 1 July 2009. Archived from the original on 2 July 2009. Retrieved 31 August 2010.
  6. "Bandra Worli Sealink Bridge" (in German). En.structurae.de. Retrieved 31 August 2010.
  7. "Finally, a date set for opening of Bandra-Worli sea link". The Indian Express. 11 June 2009. Archived from the original on 2 October 2012. Retrieved 11 June 2009.
  8. Mid-Day Mumbai (31 March 2015). "Mumbai: Bandra-Worli Sea Link toll to increase from tomorrow". Mid-Day Mumbai. Archived from the original on 31 March 2015.
  9. "Refer to Package IV – Project Status". Bandraworlisealink.com. 1 July 2009. Archived from the original on 24 July 2010. Retrieved 31 August 2010.
  10. "Bandra-Worli sea link extended up to Haji Ali". Business Standard. 16 May 2008. Archived from the original on 7 June 2011. Retrieved 31 August 2010.
  11. Chittaranjan Tembhekar (2 October 2009). "Sea link finances cause concern – Mumbai – City". The Times of India . Archived from the original on 25 October 2012. Retrieved 3 August 2010.
  12. Sharma, R (30 April 2018). "Bandra-Worli sea link: Traffic falls 13% in 2017-18". Financial Express. Archived from the original on 5 May 2023. Retrieved 5 May 2023.
  13. luckystreak03 (11 March 2007), Bandra Worli Sea Link, archived from the original on 11 April 2016, retrieved 20 March 2018{{citation}}: CS1 maint: numeric names: authors list (link)
  14. 1 2 "Looking back: Frustration and elation of building the Bandra Worli Sea Link – Slide 5". DNA India. 30 June 2011. Archived from the original on 8 August 2011. Retrieved 8 September 2011.
  15. "Looking back: Frustration and elation of building the Bandra Worli Sea Link – Slide 4". DNA India. 30 June 2011. Archived from the original on 11 August 2011. Retrieved 8 September 2011.
  16. Mumbai Mirror: Wednesday, 1 July 2009, page 4.
  17. Eastern freeway to have seismic arresters - Mumbai - DNA Archived 13 March 2013 at the Wayback Machine . Dnaindia.com. Retrieved on 6 December 2013.
  18. "Bandra Worli Sea Link". mageba-group.com (in German). Retrieved 6 September 2022.
  19. Chittaranjan Tembhekar (2 August 2012). "Sea link test drive successful, e-toll starts today". The Times of India . Archived from the original on 26 January 2013.
  20. "Bandra Worli Sea Link (BWSL) updated Toll rates as of April 2021". April 2021.
  21. "Mumbai police commissioner asks MSRDC to ensure security of Bandra-Worli sealink". Mynews.in. 22 September 2009. Archived from the original on 3 October 2011. Retrieved 3 August 2010.
  22. "Your car will be scanned - Hindustan Times". Archived from the original on 18 October 2012. Retrieved 3 August 2010.
  23. Source: DNAIndia. "Bandra-Worli Sea Link will get hi-tech security". News.indiainfo.com. Archived from the original on 17 June 2011. Retrieved 3 August 2010.
  24. "DNA: Mumbai – Hi-tech scanners on Bandra-Worli Sea Link by year-end". Daily News and Analysis. 28 July 2010. Archived from the original on 18 October 2010. Retrieved 3 August 2010.
  25. "Monorail gets Rs 1,200 cr cover". The Indian Express. 7 February 2014. Archived from the original on 20 March 2018. Retrieved 20 March 2018.
  26. "Let us walk on the sea link… how dare they let us?". The Indian Express. Archived from the original on 20 March 2018. Retrieved 20 March 2018.
  27. "Rajiv Gandhi setu (Bandra-Worli sea link) & Bandra Fort | My India". www.mapsofindia.com. 19 March 2014. Archived from the original on 21 March 2018. Retrieved 20 March 2018.
  28. "BJP demands Bandra-Worli Sea Link accessible to pedestrians | Latest News & Updates at Daily News & Analysis". dna. 14 July 2009. Archived from the original on 20 March 2018. Retrieved 20 March 2018.
  29. "BJP demands Bandra-Worli Sea Link accessible to pedestrians". 14 July 2009. Archived from the original on 18 February 2017. Retrieved 17 February 2017.{{cite journal}}: Cite journal requires |journal= (help)
  30. ""RIDE ON THE BANDRA WORLI SEA-LINK"".
  31. ""Can a Cyclist Run a Red Light in India? [10 Basic Rules Explained]"".
  32. "Features". The Economic Times. Archived from the original on 12 October 2010.
  33. "Bandra-Worli Sea Link not as popular as predicted". The Financial Express. 13 March 2017. Retrieved 10 September 2018.
  34. "On Bandra-Worli sea link, traffic down 16% in four years - Times of India". The Times of India. Retrieved 10 September 2018.
  35. NewsX (28 July 2009), NewsX Video: Potholes in Bandra-Worli sea link, archived from the original on 28 March 2018, retrieved 20 March 2018