Bioresilience

Last updated
Comparing the Features of Bioresilience and Biodiversity as Found on a Mountain Slope Comparison Bioresilience with Biodiversity.jpg
Comparing the Features of Bioresilience and Biodiversity as Found on a Mountain Slope

Bioresilience refers to the ability of a whole species or an individual of a species to adapt to change. Initially the term applied to changes in the natural environment, but increasingly it is also used for adaptation to anthropogenically induced change. [1]

Contents

History

Alexander von Humboldt was the first to note the resilience of life forms with increasing altitude and the accompanying decreasing prevalence in numbers, and he documented this in the 18th century on the slopes of the volcano Chimborazo. [2] [3]

Understanding of bioresilience evolved from research led by The Mountain Institute when establishing two of the national parks that surround Mount Everest, Makalu-Barun National Park in Nepal, and Qomolangma National Nature Preserve in the Tibet Autonomous Region of China. [4] The research documented greater biodiversity at Everest's base than higher up. There were progressively fewer documented species as the mountain ascended into higher biomes, from subtropical to temperate to alpine to Arctic-like. These fewer species, though, had greater biologic robustness correlating directly with increasing bioresilience. [5]

Current research

Monitoring of bioresilience, beginning in the Everest ecosystem but expanding to other mountain ecologies globally is being carried out by the Biomeridian Project at Future Generations University. [6]

The concept of bioresilience has also been applied to human health to explain aging or chronic diseases decrease the ability of the body to adapt; in such cases, the system becomes rigid and unable to cross different life demands. As the human body loses robustness with age, an individual becomes unable to accommodate new life demands, be they contagions, stress, or events such as injury or even jet lag. [7]

The importance of resilience in biological systems has been widely recognized in terms of the impacts on life by anthropogenic changes. [1] Accelerating environmental change and continuing loss of genetic resources positions lower biodiversity around the planet threatening ecosystem services. A major mitigating factor will be life forms with higher resilience. [8]

Paralleling the work in mountain environments, a growing number of studies is applying the concept of bioresilience to assess the robustness of life in other ecological systems challenged by the Anthropocene. One such study was with the adaptive renewal and natural perturbation in Lake Victoria, the world's second largest freshwater lake. [9]

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history. Ecology is a branch of biology, and it is not synonymous with environmentalism.

<span class="mw-page-title-main">Holocene extinction</span> Ongoing extinction event caused by human activity

The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event during the Holocene epoch. The extinctions span numerous families of bacteria, fungi, plants, and animals, including mammals, birds, reptiles, amphibians, fish, invertebrates, and affecting not just terrestrial species but also large sectors of marine life. With widespread degradation of biodiversity hotspots, such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, which goes unrecorded. The current rate of extinction of species is estimated at 100 to 1,000 times higher than natural background extinction rates, and is increasing.

<span class="mw-page-title-main">Biodiversity</span> Variety and variability of life forms

Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic, species, and ecosystem level.

<span class="mw-page-title-main">Human ecology</span> Study of the relationship between humans and their natural, social, and built environments

Human ecology is an interdisciplinary and transdisciplinary study of the relationship between humans and their natural, social, and built environments. The philosophy and study of human ecology has a diffuse history with advancements in ecology, geography, sociology, psychology, anthropology, zoology, epidemiology, public health, and home economics, among others.

<span class="mw-page-title-main">Conservation biology</span> Study of threats to biological diversity

Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.

The Anthropocene is a proposed geological epoch dating from the commencement of significant human impact on Earth's geology and ecosystems, including, but not limited to, anthropogenic climate change.

In ecology, an ecosystem is said to possess ecological stability if it is capable of returning to its equilibrium state after a perturbation or does not experience unexpected large changes in its characteristics across time. Although the terms community stability and ecological stability are sometimes used interchangeably, community stability refers only to the characteristics of communities. It is possible for an ecosystem or a community to be stable in some of their properties and unstable in others. For example, a vegetation community in response to a drought might conserve biomass but lose biodiversity.

<span class="mw-page-title-main">Refugium (population biology)</span>

In biology, a refugium is a location which supports an isolated or relict population of a once more widespread species. This isolation (allopatry) can be due to climatic changes, geography, or human activities such as deforestation and overhunting.

A functional group is merely a set of species, or collection of organisms, that share alike characteristics within a community. Ideally, the lifeforms would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an ecological niche, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding alike predators and sharing meals.

<span class="mw-page-title-main">River ecosystem</span> Type of aquatic ecosystem with flowing freshwater

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks. The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow-moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers.

<span class="mw-page-title-main">Freshwater fish</span> Fish that mostly live in freshwater

Freshwater fish are those that spend some or all of their lives in fresh water, such as rivers and lakes, with a salinity of less than 1.05%. These environments differ from marine conditions in many ways, especially the difference in levels of salinity. To survive fresh water, the fish need a range of physiological adaptations.

<span class="mw-page-title-main">Insect biodiversity</span>

Insect biodiversity accounts for a large proportion of all biodiversity on the planet—over half of the estimated 1.5 million organism species described are classified as insects.

<span class="mw-page-title-main">Ecological resilience</span> Capacity of ecosystems to resist and recover from change

In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and recovering quickly. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point, these regime shifts may also be referred to as critical transitions.

Defaunation is the global, local, or functional extinction of animal populations or species from ecological communities. The growth of the human population, combined with advances in harvesting technologies, has led to more intense and efficient exploitation of the environment. This has resulted in the depletion of large vertebrates from ecological communities, creating what has been termed "empty forest". Defaunation differs from extinction; it includes both the disappearance of species and declines in abundance. Defaunation effects were first implied at the Symposium of Plant-Animal Interactions at the University of Campinas, Brazil in 1988 in the context of Neotropical forests. Since then, the term has gained broader usage in conservation biology as a global phenomenon.

In ecology, the theory of alternative stable states predicts that ecosystems can exist under multiple "states". These alternative states are non-transitory and therefore considered stable over ecologically-relevant timescales. Ecosystems may transition from one stable state to another, in what is known as a state shift, when perturbed. Due to ecological feedbacks, ecosystems display resistance to state shifts and therefore tend to remain in one state unless perturbations are large enough. Multiple states may persist under equal environmental conditions, a phenomenon known as hysteresis. Alternative stable state theory suggests that discrete states are separated by ecological thresholds, in contrast to ecosystems which change smoothly and continuously along an environmental gradient.

<span class="mw-page-title-main">Effects of climate change on ecosystems</span> How increased greenhouse gases are affecting wildlife

Climate change has adversely affected both terrestrial and marine ecosystems, and is expected to further affect many ecosystems, including tundra, mangroves, coral reefs, caves etc. Increasing global temperature, more frequent occurrence of extreme weather, and rising sea level are among some of the effects of climate change that will have the most significant impact. Some of the possible consequences of these effects include species decline and extinction, change within ecosystems, increased prevalence of invasive species, a shift from forests being carbon sinks to carbon sources, ocean acidification, disruption of the water cycle, and increased occurrence of natural disasters, among others.

The resilience of coral reefs is the biological ability of coral reefs to recover from natural and anthropogenic disturbances such as storms and bleaching episodes. Resilience refers to the ability of biological or social systems to overcome pressures and stresses by maintaining key functions through resisting or adapting to change. Reef resistance measures how well coral reefs tolerate changes in ocean chemistry, sea level, and sea surface temperature. Reef resistance and resilience are important factors in coral reef recovery from the effects of ocean acidification. Natural reef resilience can be used as a recovery model for coral reefs and an opportunity for management in marine protected areas (MPAs).

<span class="mw-page-title-main">Biodiversity loss</span> Extinction of species and local ecosystem loss reduction or loss of species in a given habitat

Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent. The current global extinction, has resulted in a biodiversity crisis being driven by human activities which push beyond the planetary boundaries and so far has proven irreversible.

Urban evolution refers to the heritable genetic changes of populations in response to urban development and anthropogenic activities in urban areas. Urban evolution can be caused by mutation, genetic drift, gene flow, or evolution by natural selection. Biologists have observed evolutionary change in numerous species compared to their rural counterparts on a relatively short timescale.

<span class="mw-page-title-main">Marine coastal ecosystem</span> Wildland-ocean interface

A marine coastal ecosystem is a marine ecosystem which occurs where the land meets the ocean. Marine coastal ecosystems include many different types of marine habitats, such as estuaries and lagoons, salt marshes and mangrove forests, seagrass meadows and coral reefs, kelp forests and backwaters. Directly and indirectly these provide a vast range of ecosystem services for humans, such as sequestering carbon, cycling nutrients and elements, providing nurseries and fishing grounds for commercial fisheries, preventing coastal erosion and moderating extreme events, as well as providing recreational services and supporting tourism.

References

  1. 1 2 Vignieri, S. (2014). "Vanishing fauna (Special issue)". Science . 345 (6195): 392–412. doi: 10.1126/science.345.6195.392 . PMID   25061199.
  2. Wulf, Andrea (2015). The Invention of Nature. New York: Alfred A. Knopf.
  3. Jackson, Stephen T. (2009). "Alexander von Humboldt and the General Physics of the Earth" (PDF). Science . 324 (5927): 596–597. doi:10.1126/science.1171659. PMID   19407186. S2CID   206518912.
  4. Shrestha, T.B (1989). Development Ecology of the Arun River Basin in Nepal. Kathmandu: International Centre for Integrated Mountain Development.
  5. Taylor-Ide, Daniel (1995). Something Hidden Behind the Ranges: A Himalayan Quest. San Francisco: Mercury House.
  6. "Understanding Impacts on Life from Climate Change". Future Generations University. Retrieved October 12, 2018.
  7. Yun, Joon (June 18, 2018). "The Key To Health In Old Age: Bioresilience". Forbes . Retrieved October 12, 2018.
  8. Oliver, Tom H.; Heard, Mathew S.; Isaac, Nick J.B.; Roy, David B.; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C. David L.; Petchey, Owen L.; Proença, Vânia; Raffaelli, David; Suttle, K. Blake; Mace, Georgina M.; Martín-López, Berta; Woodcock, Ben A.; Bullock, James M. (2015). "Biodiversity and Resilience of Ecosystem Function". Trends in Ecology & Evolution . 30 (11): 673–684. doi:10.1016/j.tree.2015.08.009. PMID   26437633.
  9. Awiti, Alex O. (2011). "Biological Diversity and Resilience: Lessons from the Recovery of Cichlid Species in Lake Victoria". Ecology and Society . 16 (1). doi: 10.5751/ES-03877-160109 .