Biodiversity of New Zealand

Last updated

The Leiopelmatidae family of frogs is endemic to New Zealand. Hochstetters Frog on Moss.jpg
The Leiopelmatidae family of frogs is endemic to New Zealand.

The biodiversity of New Zealand, a large island nation located in the southwestern Pacific Ocean, is varied and distinctive accumulated over many millions of years as lineages evolved in the local circumstances. New Zealand's pre-human biodiversity exhibited high levels of species endemism, but has experienced episodes of biological turnover. Global extinction approximately 65 Ma (million years) ago resulted in the loss of fauna such as non-avian dinosaurs, pterosaurs and marine reptiles e.g. mosasaurs, elasmosaurs and plesiosaurs. [1] The ancient fauna is not well known, but at least one species of terrestrial mammal existed in New Zealand around 19 Ma ago. For at least several Ma before the arrival of human and commensal species, the islands had no terrestrial mammals except for bats and seals, the main component of the terrestrial fauna being insects and birds. Recently—since c.1300 CE—a component has been introduced by humans, including many terrestrial mammals.

Pacific Ocean Ocean between Asia and Australia in the west, the Americas in the east and Antarctica or the Southern Ocean in the south.

The Pacific Ocean is the largest and deepest of Earth's oceanic divisions. The Pacific Ocean is twinned with Amelia upon Conto It extends from the Arctic Ocean in the north to the Southern Ocean in the south and is bounded by Asia and Australia in the west and the Americas in the east.

Biodiversity Variety and variability of life forms

Biodiversity refers to the variety and variability of life on Earth. Biodiversity is typically a measure of variation at the genetic, species, and ecosystem level. Terrestrial biodiversity is usually greater near the equator, which is the result of the warm climate and high primary productivity. Biodiversity is not distributed evenly on Earth, and is richest in the tropics. These tropical forest ecosystems cover less than 10 percent of earth's surface, and contain about 90 percent of the world's species. Marine biodiversity is usually highest along coasts in the Western Pacific, where sea surface temperature is highest, and in the mid-latitudinal band in all oceans. There are latitudinal gradients in species diversity. Biodiversity generally tends to cluster in hotspots, and has been increasing through time, but will be likely to slow in the future.

Endemism Ecological state of being unique to a defined geographic location or habitat

Endemism is the ecological state of a species being unique to a defined geographic location, such as an island, nation, country or other defined zone, or habitat type; organisms that are indigenous to a place are not endemic to it if they are also found elsewhere. The extreme opposite of endemism is cosmopolitan distribution. An alternative term for a species that is endemic is precinctive, which applies to species that are restricted to a defined geographical area.

Contents

New Zealand has developed a national Biodiversity Action Plan to address conservation of considerable numbers of threatened flora and fauna within New Zealand.

Evolution

New Zealand's geckos, such as the Duvaucel's gecko, may have had their origins in New Caledonia although Australia is implicated in recent phylogenetic work. Duvaucel's gecko.JPG
New Zealand's geckos, such as the Duvaucel's gecko, may have had their origins in New Caledonia although Australia is implicated in recent phylogenetic work.

The break-up of the supercontinent of Gondwana left the resulting continents and microcontinents with shared biological affinities. Zealandia (the continental crust from which New Zealand and New Caledonia later developed) began to move away from Antarctic Gondwana 85 Ma ago, the break being complete by 66 Ma ago. [3] [4] It has been moving northwards since then, changing both in relief and climate. About 23 million years ago New Zealand was mostly underwater. One estimate suggests just 18% of the present surface area remained above the water.[ citation needed ] However geological evidence does not rule out the possibility that it was entirely submerged, or at least restricted to small islands. [5] [6] Today about 93% of the Zealandian continent remains below the sea. Several elements of Gondwana biota are present in New Zealand today: predominantly plants, such as the podocarps and the southern beeches, but also a distinctive insect fauna, New Zealand's unusual frogs and the tuatara, as well as some of New Zealand's birds. It seems likely that some primitive mammals also were part of the original cargo. Whether or not any of these taxa are descendents of survivors of that ancient cargo remains unproven. Recent molecular evidence has shown that even the iconic Gondwanan plants the southern beeches (Nothofagus) arrived in New Zealand after separation of Zealandia from Gondwana. There is a high rate of interspecific and intraspecific hybridisation in New Zealand plants and animals. [7]

Supercontinent Landmass comprising more than one continental core, or craton

In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, many earth scientists use a different definition: "a clustering of nearly all continents", which leaves room for interpretation and is easier to apply to Precambrian times.

Gondwana Neoproterozoic to Carboniferous supercontinent

Gondwana, , was a supercontinent that existed from the Neoproterozoic until the Jurassic.

New Caledonia Overseas territory of France in the southwest Pacific Ocean

New Caledonia is a special collectivity of France, currently governed under the Nouméa Accord, located in the southwest Pacific Ocean, to the south of Vanuatu, about 1,210 km (750 mi) east of Australia and 20,000 km (12,000 mi) from Metropolitan France. The archipelago, part of the Melanesia subregion, includes the main island of Grande Terre, the Loyalty Islands, the Chesterfield Islands, the Belep archipelago, the Isle of Pines, and a few remote islets. The Chesterfield Islands are in the Coral Sea. French people, and especially locals, refer to Grande Terre as Le Caillou.

The two sources of New Zealand's biodiversity following separation from Gondwana have been speciation and air- or sea-borne immigration. Most of these immigrants have arrived from Australia, and have provided the majority of New Zealand's birds [8] and bats as well as some plant species (carried on the wind or inside the guts of birds). Some of these immigrants arrived long enough ago that their affinities to their Australian ancestors are uncertain; for example, the affinities of the unusual short-tailed bats (Mystacinidae) were unknown until fossils from the Miocene were found in Australia. Cyanoramphus parakeets are thought to have originated in New Caledonia and have been successful at reaching many islands in the region. The link between the two island groups also includes affinities between skink and gecko families. [9]

Speciation The evolutionary process by which populations evolve to become distinct species

Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.

Bat Order of flying mammals

Bats are mammals of the order Chiroptera; with their forelimbs adapted as wings, they are the only mammals naturally capable of true and sustained flight. Bats are more manoeuvrable than birds, flying with their very long spread-out digits covered with a thin membrane or patagium. The smallest bat, and arguably the smallest extant mammal, is Kitti's hog-nosed bat, which is 29–34 mm (1.14–1.34 in) in length, 15 cm (5.91 in) across the wings and 2–2.6 g (0.07–0.09 oz) in mass. The largest bats are the flying foxes and the giant golden-crowned flying fox, Acerodon jubatus, which can weigh 1.6 kg (4 lb) and have a wingspan of 1.7 m.

Mystacinidae family of mammals

Mystacinidae is a family of unusual bats, the New Zealand short-tailed bats. There is one living genus, Mystacina, with two species, one of which is believed to have become extinct in the 1960s. They are medium-sized bats, about 6 centimetres (2.4 in) in length, with grey, velvety fur.

Elements

Floral biodiversity

The kauri of North Island were the largest trees in New Zealand, but were extensively logged and are much less common today. Kauri Te Matua Ngahere.jpg
The kauri of North Island were the largest trees in New Zealand, but were extensively logged and are much less common today.

The history, climate and geology of New Zealand have created a great deal of diversity in New Zealand's vegetation types. The main two types of forest have been dominated by podocarps and southern beech. Podocarps (Podocarpaceae), an ancient evergreen gymnosperm family of trees, have changed little in the last 190 million years. Forests dominated by podocarps form a closed canopy with an understory of hardwoods and shrubs. The forests of southern beeches, from the genus Nothofagus, comprise a less diverse habitat, with the beeches of four species dominating the canopy and allowing a single understory. In the north of New Zealand the podocarp forests were dominated by the ancient giant kauri. These trees are amongst the largest in the world, holding the record for the greatest timber volume of any tree. The value of this was not lost on early European settlers, and most of these trees were felled.

Evergreen plant that has leaves in all four seasons

In botany, an evergreen is a plant that has leaves throughout the year that are always green. This is true even if the plant retains its foliage only in warm climates, and contrasts with deciduous plants, which completely lose their foliage during the winter or dry season. There are many different kinds of evergreen plants, both trees and shrubs. Evergreens include:

Gymnosperm group of plants, at a varying rank

The gymnosperms, also known as Acrogymnospermae, are a group of seed-producing plants that includes conifers, cycads, Ginkgo, and gnetophytes. The term "gymnosperm" comes from the Greek composite word γυμνόσπερμος, meaning "naked seeds". The name is based on the unenclosed condition of their seeds. The non-encased condition of their seeds stands in contrast to the seeds and ovules of flowering plants (angiosperms), which are enclosed within an ovary. Gymnosperm seeds develop either on the surface of scales or leaves, which are often modified to form cones, or solitary as in Yew, Torreya, Ginkgo.

Hardwood wood from angiosperm trees

Hardwood is wood from dicot trees. These are usually found in broad-leaved temperate and tropical forests. In temperate and boreal latitudes they are mostly deciduous, but in tropics and subtropics mostly evergreen. Hardwood contrasts with softwood.

The remaining vegetation types in New Zealand are grassland of grass and tussock, usually associated with the subalpine areas, and the low shrublands between grasslands and forests. These shrublands are dominated by daisies, which can become woody and 3 m high.

Grassland areas where the vegetation is dominated by grasses (Poaceae)

Grasslands are areas where the vegetation is dominated by grasses (Poaceae); however, sedge (Cyperaceae) and rush (Juncaceae) families can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica. Grasslands are found in most ecoregions of the Earth. For example, there are five terrestrial ecoregion classifications (subdivisions) of the temperate grasslands, savannas, and shrublands biome (ecosystem), which is one of eight terrestrial ecozones of the Earth's surface.

Asteraceae Family of plants

Asteraceae or Compositae is a very large and widespread family of flowering plants (Angiospermae).

Faunal diversity

Until 2006, it was thought that no mammals, other than bats and marine mammals, had reached New Zealand before humans did. The discovery of a femur and mandibles of an extinct non-volant (non-flying) mammal in Otago, dated at 16–19 million years old, has changed the view of New Zealand's evolutionary history, as it strongly suggests that mammals had been part of New Zealand's fauna since the break-up of Gondwana. The fossil has been called SB mammal. It is not known when, or why, land mammals became extinct in New Zealand but there were none present on New Zealand for several million years before the arrival of man.

The short-tailed bats (from the monotypic family Mystacinidae), first arrived in the Oligocene or before. These are unique among bats due to their terrestrial foraging habits; this has long been credited to the absence of competing terrestrial mammals, though the presence of the already terrestrial Icarops in the Miocene of Australia shows that their terrestriality evolved in the mainland, while Saint Bathans Fauna mystacine fossils co-existed with another terrestrial mammal, the Saint Bathans mammal. Some plants have evolved with the bats and are fertilised on the ground by the bats. The long-tailed bat (Chalinolobus tuberculatus), a more recent arrival, is relatively common. The Miocene Saint Bathans Fauna also preserves remains of a vesper bat and several incertae sedis species. [10]

The extinct huia was a member of the endemic bird family Callaeidae (New Zealand wattlebirds) Huia Buller.jpg
The extinct huia was a member of the endemic bird family Callaeidae (New Zealand wattlebirds)

Birds comprise the most important part of New Zealand's vertebrate fauna. It is uncertain if many birds in New Zealand are descended from Gondwanan stock, as DNA evidence suggests that even the ratites (the kiwis and the moas) arrived after the split from Antarctica.[ citation needed ] Recent studies suggest that New Zealand wrens are Gondwanan descendants. DNA studies seem to indicate that the wrens are the most ancient of all passerines, splitting from the ancestral passerine stock at the time New Zealand become an isolated land mass. In the absence of mammals, birds diversified into the niches usually filled by mammals in other ecosystems.

The moas, of which there were eleven species, were large browsers, and were in turn the prey species of the giant Haast's eagle or Harpagornis eagle. Both the moas and the eagle became extinct shortly after the arrival of humans in New Zealand sometime around 1300 CE. It appears that human hunters exterminated the moa populations, which deprived the Harpagornis of its primary food source, leading to the extinction of that species as well. New Zealand's emblematic kiwis fill the role of small foragers of the leaf-litter, and the enigmatic adzebill was a universal omnivore. The wattlebirds, Callaeidae, are a family endemic to New Zealand, but many other New Zealand birds show clear affinities to Australia, including the New Zealand pigeon and the New Zealand falcon, as well as various parrots, rails, waders, owls, and seabirds (albeit often with a New Zealand twist). Of the 245 species of birds from the greater New Zealand (the main islands along with the offshore islands, also including Norfolk Island), 174 were endemic, roughly 71%. Of these, about 32% of the genera were endemic.

The tuatara is a unique component of New Zealand's biodiversity and the only surviving species in the order Sphenodontia. Tuatara adult.jpg
The tuatara is a unique component of New Zealand's biodiversity and the only surviving species in the order Sphenodontia.

No agamas or iguanas are recorded from New Zealand; lizards are represented by geckos and skinks, which arrived multiple times. The fossil record shows a highly diverse herpetofauna during the Miocene, with a mekosuchine crocodile and meiolaniid and pleurodire turtles being known from the Saint Bathans Fauna. The tuatara, reaching 60 cm (23.6 inches), is New Zealand's largest living reptile, a last remnant from the once diverse clade that was Sphenodontia. Frogs, which because of their intolerance for saltwater are assumed to have descended from ancestors that broke off from Gondwana, are one of the few exceptions to the rule that amphibians are never found on oceanic islands (another being the frogs of Fiji). New Zealand's few wholly freshwater fishes are derived from diadromous species.

This Auckland tree weta is about 7 cm long, excluding legs and antennae Female tree weta on tree fern.jpg
This Auckland tree weta is about 7 cm long, excluding legs and antennae

New Zealand's terrestrial invertebrate community displays strong Gondwanan affinities, and has also diversified strongly, if unevenly. There are over a thousand species of snail, and many species of insect have become large and in many cases flightless, especially grasshoppers and beetles. There are, however, fewer than 12 species of ant. The most famous of New Zealand's insects, the wetas, are ground-living relatives of the crickets that often reach enormous proportions. Many endemic marine invertebrate species, particularly marine snails, have evolved in the seas surrounding New Zealand. [11] [12] [13]

Endemism

The siphon whelk Penion cuvierianus jeakingsi is a large, deep sea snail species endemic to New Zealand waters. Penion jeakingsi.png
The siphon whelk Penion cuvierianus jeakingsi is a large, deep sea snail species endemic to New Zealand waters.

New Zealand has a high number of endemic species, [14] such as:

Of New Zealand's estimated 20,000 fungi species, only about 4,500 are known. [16] New Zealand also has two sub-species of endemic cetaceans, Hector's dolphin and its close relative Maui's dolphin.

Human impact

The common brushtail possum is one of the 33 species of land mammal introduced to New Zealand by humans. Brushtail possum.jpg
The common brushtail possum is one of the 33 species of land mammal introduced to New Zealand by humans.

The arrival of humans in New Zealand has presented a challenge for the native species, causing the extinction of several. This is predominantly because many species in New Zealand have evolved in the absence of mammalian predators for the last few million years (a situation known as ecological naivety), thus losing the responses needed to deal with such threats. Humans brought with them to New Zealand (intentionally or otherwise) a host of attendant species, starting with the Polynesian rat, and now including stoats, weasels, black rats, Norway rats, brushtailed possums, and feral cats and dogs, as well as herbivores such as deer, wallabies and tahr (a wild goat species from the Himalayas), which detrimentally affect native vegetation.

The date of the first arrival of the Māori in New Zealand is given as around 1300 CE, [17] and evidence suggests that Polynesian rats seemed to have arrived at a similar date. [18] Their arrival set off a first wave of extinctions, eliminating smaller defenceless ground nesting birds such as the New Zealand owlet-nightjar. A second wave of extinctions was triggered by the arrival of the Māori, who hunted many of the larger species, such as the moa, adzebill and several large ducks and geese, for food. The Harpagornis and Eyles's harrier are thought to have gone extinct due to the loss of their food source. A third wave of extinction began with the arrival of European settlers, who brought with them numerous new mammal species, particularly the predatory domestic cat, and initiated more habitat modification. In all, over 50% of New Zealand's bird species are considered extinct,[ citation needed ] along with a species of bat and several frogs, a freshwater fish (the New Zealand greyling), skinks and geckos; this is second only to Hawaii in terms of proportion of species lost.

The silvereye is one of several species of birds that have introduced themselves to New Zealand in the wake of human settlement. Silvereye3.jpg
The silvereye is one of several species of birds that have introduced themselves to New Zealand in the wake of human settlement.

In some instances, the extinction of New Zealand's native fauna has brought about a natural colonisation from Australia. In the case of the silvereye, which colonised New Zealand in the 19th century, it had no relative in New Zealand's original fauna and is now restricted to newer man-made niches. In the case of the black swan (which was originally thought to have been introduced by humans but is now suspected to have self-introduced), the invading species re-occupied part of its former range (the extinct New Zealand swan is now believed to be a subspecies of the black swan). The arrival of the pukeko and the swamp harrier is more interesting, mirroring the arrival of related species in the past, before they evolved into the takahe and the Eyles's harrier. Once these specialised birds declined and (in the case of the harrier) became extinct, their niches were available and colonisation could occur again. [19] [20]

Management

Large areas of native bush has been logged and cleared for pasture in the past. Native bush in Waiohine Gorge.jpg
Large areas of native bush has been logged and cleared for pasture in the past.

The New Zealand government, through the Department of Conservation, works aggressively to protect what remains of New Zealand's biological heritage. It has pioneered work on island restoration where offshore islands are systematically cleared of introduced species such as goats, feral cats and rats. This then allows the re-introduction of native species that can hopefully flourish in the absence of non-native predators and competitors. The longest running project of this type is on Cuvier Island, [21] but other islands are also being used such as Tiritiri Matangi and Mangere Island. Establishment of conservation areas is not restricted to islands however and several ecological islands have been established on the New Zealand mainland which are isolated by the use of pest-exclusion fences.

See also

Related Research Articles

Geography of New Caledonia

The geography of New Caledonia (Nouvelle-Calédonie), an overseas collectivity of France located in the subregion of Melanesia, makes the continental island group unique in the southwest Pacific. Among other things, the island chain has played a role in preserving unique biological lineages from the Mesozoic. It served as a waystation in the expansion of the predecessors of the Polynesians, the Lapita culture. Under the Free French it was a vital naval base for Allied Forces during the War in the Pacific.

Moa order of birds (fossil)

Moa were nine species of now-extinct flightless birds endemic to New Zealand. The two largest species, Dinornis robustus and Dinornis novaezelandiae, reached about 3.6 m (12 ft) in height with neck outstretched, and weighed about 230 kg (510 lb). It is estimated that, when Polynesians settled New Zealand circa 1280, the moa population was about 58,000.

Haasts eagle large extinct eagle from New Zealand

The Haast's eagle is an extinct species of eagle that once lived in the South Island of New Zealand, commonly accepted to be the Pouakai of Maori legend. The species was the largest eagle known to have existed. Its massive size is explained as an evolutionary response to the size of its prey, the flightless moa, the largest of which could weigh 230 kg (510 lb). Haast's eagle became extinct around 1400, after the moa were hunted to extinction by the first Māori.

New Zealand wren family of New Zealand wrens

The New Zealand wrens are a family (Acanthisittidae) of tiny passerines endemic to New Zealand. They were represented by six known species in four or five genera, although only two species survive in two genera today. They are understood to form a distinct lineage within the passerines, but authorities differ on their assignment to the oscines or suboscines. More recent studies suggest that they form a third, most ancient, suborder Acanthisitti and have no living close relatives at all. They are called "wrens" due to similarities in appearance and behaviour to the true wrens (Troglodytidae), but are not members of that family.

Fauna of New Zealand

The animals of New Zealand, part of its biota, have a particularly interesting history because, before the arrival of humans, less than 900 years ago, the country was mostly free of mammals, except those that could swim there or fly there (bats), though as recently as the Miocene there was the terrestrial Saint Bathans Mammal, implying that mammals were present since the island broke away from other landmasses. This meant that all the ecological niches occupied by mammals elsewhere were occupied by either insects or birds, leading to an unusually large number of flightless birds, including the kiwi, the weka, the moa, and the kakapo.

Biodiversity of New Caledonia

The biodiversity of New Caledonia is of exceptional biological and paleoecological interest. It is frequently referred to as a biodiversity hotspot. The country is a large South Pacific archipelago with a total land area of more than 18,000 square kilometres (6,900 sq mi). The terrain includes a variety of reefs, atolls, small islands, and a variety of topographical and edaphic regions on the largest island, all of which promote the development of unusually concentrated biodiversity. The region's climate is oceanic and tropical.

Adzebill genus of birds

The adzebills, genus Aptornis, were two closely related bird species, the North Island adzebill, Aptornis otidiformis, and the South Island adzebill, Aptornis defossor, of the extinct family Aptornithidae. The family was endemic to New Zealand. A fossil species, Aptornis proasciarostratus, is known from the Miocene Saint Bathans Fauna.

New Caledonia rain forests

The New Caledonia rain forests are a terrestrial ecoregion, located in New Caledonia in the South Pacific. It is a tropical moist broadleaf forest ecoregion, part of the Australasia ecozone.

An ecological island is not necessarily an island surrounded by water, but is an area of land, isolated by natural or artificial means from the surrounding land, where a natural micro-habitat exists amidst a larger differing ecosystem.

Birds of New Zealand

The birds of New Zealand evolved into an avifauna that included a large number of endemic species. As an island archipelago New Zealand accumulated bird diversity and when Captain James Cook arrived in the 1770s he noted that the bird song was deafening. The mix includes species with unusual biology such as the kakapo which is the world's only flightless, nocturnal, lek breeding parrot, but also many species that are similar to neighboring land areas. A process of colonization, speciation and extinction has been at play over many millions of years, including recent times. Some species have arrived in human recorded history while other arrived before but are little changed.

Meiolaniidae family of reptiles

Meiolaniidae is an extinct family of large, possibly herbivorous turtles with heavily armored heads and tails known from South America and most of Oceania. They are best known from the last surviving genus, Meiolania, which lived in the rain forests of Australia from the Miocene until the Pleistocene, and relict populations that lived on Lord Howe Island and New Caledonia until 2000 years ago. A similar form is also known from the Miocene Saint Bathans Fauna of New Zealand.

Neozealandia is a biogeographic province of the Antarctic Realm according to the classification developed by Miklos Udvardy in 1975.

The Saint Bathans mammal is a currently unnamed extinct primitive mammal from the Miocene of New Zealand. A member of the Saint Bathans Fauna, it is notable for being a late surviving "archaic" mammal species, neither a placental or a marsupial, as well as for providing evidence that flightless fully terrestrial mammals did in fact once live in Zealandia, in contrast with modern New Zealand, where bats and pinnipeds are the only non introduced mammals in the otherwise bird-dominated terrestrial faunas.

Natural history of New Zealand

The natural history of New Zealand began when the landmass Zealandia broke away from the supercontinent Gondwana in the Cretaceous period. Before this time, Zelandia shared its past with Australia and Antarctica. Since this separation, the New Zealand biota and landscape has evolved in near-isolation. The exclusively natural history of the country ended in about 1300 AD, when humans first settled, and the country's environmental history began. The period from 1300 AD to today coincides with the extinction of many of New Zealand's unique species that had evolved there.

Mammals of New Zealand

Prior to human settlement, the mammals of New Zealand consisted entirely of several species of bat, and several dozen marine mammal species. The Māori brought the kurī and kiore in about 1250 CE, and Europeans from 1769 onwards brought the pig, mice, two additional species of rats, weasels, stoats, ferrets and possums and many other species, some of which cause conservation problems for indigenous species.

The biodiversity of Tasmania is of exceptional biological and paleoecological interest. A state of Australia, it is a large South Pacific archipelago of one large main island and a range of smaller islands. The terrain includes a variety of reefs, atolls, many small islands, and a variety of topographical and edaphic regions on the largest island, all of which promote the development of unusually concentrated biodiversity. During long periods geographically and genetically isolated, it is known for its unique flora and fauna. The region's climate is oceanic.

Proapteryx micromeros is an extinct kiwi known from the early Miocene sediments of the Saint Bathans Fauna of Otago, New Zealand.

St Bathans Fauna

The St Bathans Fauna is found in the lower Bannockburn Formation of the Manuherikia Group of Central Otago, in the South Island of New Zealand. It comprises a suite of fossilised prehistoric animals from the late Early Miocene (Altonian) period, with an age range of 19–16 million years ago.

References

  1. Campbell, Hamish; Gerard Hutching (2007). In Search of Ancient New Zealand. North Shore, New Zealand: Penguin Books. p. 121. ISBN   978-0-14-302088-2.
  2. Nielsen, S. V.; Bauer, A. M.; Jackman, T. R.; Hitchmough, R. A.; Daugherty, C. H. (2011). "New Zealand geckos (Diplodactylidae): Cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities". Molecular Phylogenetics and Evolution. 59 (1): 1–22. doi:10.1016/j.ympev.2010.12.007. PMID   21184833.
  3. Trewick SA, Paterson AM, Campbell HJ. 2007. Hello New Zealand. Journal of Biogeography 34: 1–6.
  4. PDF Trewick SA, Morgan-Richards M. 2009 New Zealand Biology. Pages 665-673 in Encyclopedia of Islands (Eds R.G. Gillespie and D.A. Clague). University of California Press, Berkeley.
  5. "Searching for the lost continent of Zealandia". The Dominion Post. 29 September 2007. Retrieved 9 October 2007. We cannot categorically say that there has always been land here. The geological evidence at present is too weak, so we are logically forced to consider the possibility that the whole of Zealandia may have sunk.
  6. Campbell, Hamish; Gerard Hutching (2007). In Search of Ancient New Zealand. North Shore, New Zealand: Penguin Books. pp. 166–167. ISBN   978-0-14-302088-2.
  7. Morgan‐Richards, M.; Smissen, R. D.; Shepherd, L. D.; Wallis, G. P.; Hayward, J. J.; Chan, C. H.; Chambers, G. K.; Chapman, H. M. (2009). "A review of genetic analyses of hybridisation in New Zealand". Journal of the Royal Society of New Zealand. 39: 15. doi:10.1080/03014220909510561.
  8. Trewick, S. A.; Gibb, G. C. (2010). "Vicars, tramps and assembly of the New Zealand avifauna: A review of molecular phylogenetic evidence". Ibis. 152 (2): 226. doi:10.1111/j.1474-919X.2010.01018.x.
  9. Wallis GP, Trewick SA. 2009. New Zealand phylogeography: evolution on a small continent. Molecular Ecology, 18, 3548–3580. doi: 10.1111/j.1365-294X.2009.04294.x
  10. Worthy, Trevor; Hand, SJ; Worthy, TH; Archer, M; Worthy, JP; Tennyson, AJD; Scofield, RP (2013). "Miocene mystacinids (Chiroptera, Noctilionoidea) indicate a long history for endemic bats in New Zealand". Journal of Vertebrate Paleontology 33 (6): 1442-1448.
  11. Powell A. W. B., New Zealand Mollusca, William Collins Publishers Ltd, Auckland, New Zealand 1979 ISBN   0-00-216906-1
  12. Beu, A.G. and Maxwell, P.A. 1990. Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Bulletin, 58.
  13. Vaux, Felix; Hills, Simon F.K.; Marshall, Bruce A.; Trewick, Steven A.; Morgan-Richards, Mary (2017). "A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record". Molecular Phylogenetics and Evolution. 114 (2017): 367–381. doi:10.1016/j.ympev.2017.06.018.
  14. Brouwer, Floor; Fox, Glenn; Jongeneel, Roel; Jongeneel, R. A. (2012). The Economics of Regulation in Agriculture: Compliance with Public and Private Standards. CABI. p. 88. ISBN   9781845935573.
  15. Willan, R.C., de C. Cook, S., Spencer, H.G., Creese, R.G., O’Shea, S., Jackson, G.D. Phylum Mollusca. In: de C. Cook, S.C. (eds.), New Zealand Coastal Marine Invertebrates 1, 296 – 298. Canterbury University Press, Christchurch, New Zealand ISBN   978-1877257-60-5
  16. "What happens in New Zealand... Stays in Vegas". New Zealand Trade and Enterprise. 11 March 2017. Retrieved 29 April 2017.[ permanent dead link ]
  17. "Rat remains help date New Zealand's colonisation". New Scientist . 4 June 2008. Retrieved 30 June 2018.
  18. Janet M. Wilmshurst, Atholl J. Anderson, Thomas F. G. Higham, and Trevor H. Worthy (2008). Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat, Proceedings of the National Academy of Sciences, 105, 7676–7680.
  19. Trewick SA. 2011. Vicars and vagrants: Assembly of the New Zealand avifauna. Australasian Science 32: 24-27.
  20. Trewick SA, Morgan-Richards M. 2014. New Zealand Wild Life. Penguin, New Zealand. ISBN   9780143568896
  21. Cuvier Island restoration Archived 30 September 2007 at the Wayback Machine (from the Department of Conservation website)

Further reading

Volume 1 ISBN   9781877257728, Volume 2 ISBN   9781877257933, Volume 3 ISBN   9781927145050
Journal articles