Biodiversity of New Zealand

Last updated

The frog family Leiopelmatidae is endemic to New Zealand. Hochstetters Frog on Moss.jpg
The frog family Leiopelmatidae is endemic to New Zealand.

The biodiversity of New Zealand, a large island country located in the south-western Pacific Ocean, is varied and distinctive. The species of New Zealand accumulated over many millions of years as lineages evolved in the local circumstances. New Zealand's pre-human biodiversity exhibited high levels of species endemism, but has experienced episodes of biological turnover. Global extinction approximately 65 Ma (million years ago) resulted in the loss of fauna such as non-avian dinosaurs, pterosaurs and marine reptiles e.g. mosasaurs, elasmosaurs and plesiosaurs. [1] The ancient fauna is not well known, but at least one species of terrestrial mammal existed in New Zealand around 19 Ma. For at least several million years before the arrival of humans, the islands had no terrestrial mammals except for bats and seals, the main component of the terrestrial fauna being insects and birds. It was not until the 14th century that new species were introduced by humans.

Contents

New Zealand has developed a national biodiversity action plan to address conservation of considerable numbers of threatened flora and fauna within New Zealand.

Evolution

New Zealand's geckos, such as the Duvaucel's gecko, may have had their origins in New Caledonia although Australia is implicated in recent phylogenetic work. Duvaucel's gecko.JPG
New Zealand's geckos, such as the Duvaucel's gecko, may have had their origins in New Caledonia although Australia is implicated in recent phylogenetic work.

The break-up of the supercontinent of Gondwana left the resulting continents and microcontinents with shared biological affinities. Zealandia (the continental crust from which New Zealand and New Caledonia later developed) began to move away from Antarctic Gondwana 85 Ma ago, the break being complete by 66 Ma ago. [3] [4] It has been moving northwards since then, changing both in relief and climate. About 23 million years ago New Zealand was mostly underwater. One estimate suggests just 18% of the present surface area remained above the water.[ citation needed ] However geological evidence does not rule out the possibility that it was entirely submerged, or at least restricted to small islands. [5] [6] Today about 93% of the Zealandian continent remains below the sea. Several elements of Gondwana biota are present in New Zealand today: predominantly plants, such as the podocarps and the southern beeches, but also a distinctive insect fauna, New Zealand's unusual frogs and the tuatara, as well as some of New Zealand's birds. It seems likely that some primitive mammals also were part of the original cargo. Whether or not any of these taxa are descendants of survivors of that ancient cargo remains unproven. Recent molecular evidence has shown that even the iconic Gondwanan plants the southern beeches ( Nothofagus ) arrived in New Zealand after separation of Zealandia from Gondwana. There is a high rate of interspecific and intraspecific hybridisation in New Zealand plants and animals. [7]

The two sources of New Zealand's biodiversity following separation from Gondwana have been speciation and air- or sea-borne immigration. Most of these immigrants have arrived from Australia, and have provided the majority of New Zealand's birds [8] and bats as well as some plant species (carried on the wind or inside the guts of birds). Some of these immigrants arrived long enough ago that their affinities to their Australian ancestors are uncertain; for example, the affinities of the unusual short-tailed bats (Mystacinidae) were unknown until fossils from the Miocene were found in Australia. Cyanoramphus parakeets are thought to have originated in New Caledonia and have been successful at reaching many islands in the region. The link between the two island groups also includes affinities between skink and gecko families. [9]

Elements

Floral biodiversity

The kauri of North Island were the largest trees in New Zealand, but were extensively logged and are much less common today. Kauri Te Matua Ngahere.jpg
The kauri of North Island were the largest trees in New Zealand, but were extensively logged and are much less common today.
Many species of southern bull kelp are found in New Zealand. Tautuku-Durvillaea1.jpg
Many species of southern bull kelp are found in New Zealand.

The history, climate and geology of New Zealand have created a great deal of diversity in New Zealand's vegetation types. The main two types of forest have been dominated by podocarps and southern beech. Podocarps (Podocarpaceae), an ancient evergreen gymnosperm family of trees, have changed little in the last 190 million years. Forests dominated by podocarps form a closed canopy with an understorey of hardwoods and shrubs. The forests of southern beeches, from the genus Nothofagus, comprise a less diverse habitat, with the beeches of four species dominating the canopy and allowing a single understorey. In the north of New Zealand the podocarp forests were dominated by the ancient giant kauri. These trees are amongst the largest in the world, holding the record for the greatest timber volume of any tree. The value of this was not lost on early European settlers, and most of these trees were felled.

The remaining vegetation types in New Zealand are grassland of grass and tussock, usually associated with the subalpine areas, and the low shrublands between grasslands and forests. These shrublands are dominated by daisies, which can become woody and 3 m high. New Zealand had a 2019 Forest Landscape Integrity Index mean score of 7.12/10, ranking it 55th globally out of 172 countries. [10]

In addition to terrestrial plants, New Zealand is home to many species of algae. Many species of southern bull kelp are found along the coasts of the main islands, Chatham Islands and the Subantarctic Islands. [11] [12]

Faunal diversity

Until 2006, it was thought that no mammals, other than bats and marine mammals, had reached New Zealand before humans did. The discovery of a femur and mandibles of an extinct non-volant (non-flying) mammal in Otago, dated at 16–19 million years old, has changed the view of New Zealand's evolutionary history, as it strongly suggests that mammals had been part of New Zealand's fauna since the break-up of Gondwana. The fossil has been called SB mammal. It is not known when, or why, land mammals became extinct in New Zealand but there were none present on New Zealand for several million years before the arrival of humans.

The short-tailed bats (from the monotypic family Mystacinidae), first arrived in the Oligocene or before. These are unique among bats due to their terrestrial foraging habits; this has long been credited to the absence of competing terrestrial mammals, though the presence of the already terrestrial Icarops in the Miocene of Australia shows that their terrestriality evolved in the mainland, while St Bathans fauna mystacine fossils co-existed with another terrestrial mammal, the Saint Bathans mammal. Some plants have evolved with the bats and are fertilised on the ground by the bats. The long-tailed bat (Chalinolobus tuberculatus), a more recent arrival, is relatively common. The Miocene St Bathans fauna also preserves remains of a vesper bat and several incertae sedis species. [13]

The extinct huia was a member of the endemic bird family Callaeidae (New Zealand wattlebirds). Huia Buller.jpg
The extinct huia was a member of the endemic bird family Callaeidae (New Zealand wattlebirds).

Birds comprise the most important part of New Zealand's vertebrate fauna. It is uncertain if many birds in New Zealand are descended from Gondwanan stock, as DNA evidence suggests that even the ratites (the kiwis and the moas) arrived after the split from Antarctica.[ citation needed ] Recent studies suggest that New Zealand wrens are Gondwanan descendants. DNA studies seem to indicate that the wrens are the most ancient of all passerines, splitting from the ancestral passerine stock at the time New Zealand become an isolated land mass. In the absence of mammals, birds diversified into the niches usually filled by mammals in other ecosystems.

The moas, of which there were eleven species, were large browsers, and were in turn the prey species of the giant Haast's eagle. Both the moas and the eagle became extinct shortly after the arrival of humans in New Zealand sometime around 1300 CE. It appears that human hunters exterminated the moa populations, which deprived the Haast's eagle of its primary food source, leading to the extinction of that species as well. New Zealand's emblematic kiwis fill the role of small foragers of the leaf-litter, and the enigmatic adzebill was a universal omnivore. The wattlebirds, Callaeidae, are a family endemic to New Zealand, but many other New Zealand birds show clear affinities to Australia, including the New Zealand pigeon and the New Zealand falcon, as well as various parrots, rails, waders, owls, and seabirds (albeit often with a New Zealand twist). Of the 245 species of birds from the greater New Zealand (the main islands along with the offshore islands, also including Norfolk Island), 174 were endemic, roughly 71%. Of these, about 32% of the genera were endemic.

The tuatara is a unique component of New Zealand's biodiversity and the only surviving species in the order Sphenodontia. Tuatara adult.jpg
The tuatara is a unique component of New Zealand's biodiversity and the only surviving species in the order Sphenodontia.

No agamas or iguanas are recorded from New Zealand; lizards are represented by geckos and skinks, which arrived multiple times. The fossil record shows a highly diverse herpetofauna during the Miocene, with a mekosuchine crocodile and meiolaniid and pleurodire turtles being known from the St Bathans fauna. The tuatara, reaching 60 cm (23.6 inches), is New Zealand's largest living reptile, a last remnant from the once diverse clade that was Sphenodontia. Frogs, which because of their intolerance for saltwater are assumed to have descended from ancestors that broke off from Gondwana, are one of the few exceptions to the rule that amphibians are never found on oceanic islands (another being the frogs of Fiji). New Zealand's few wholly freshwater fishes are derived from diadromous species.

This Auckland tree weta is about 7 cm long, excluding legs and antennae Female tree weta on tree fern.jpg
This Auckland tree wētā is about 7 cm long, excluding legs and antennae

New Zealand's terrestrial invertebrate community displays strong Gondwanan affinities, and has also diversified strongly, if unevenly. There are over a thousand species of snail, and many species of insect have become large and in many cases flightless, especially grasshoppers and beetles. There are, however, fewer than 12 species of ant. The most famous of New Zealand's insects, the wētā, are ground-living relatives of the crickets that often reach enormous proportions. Many endemic marine invertebrate species, particularly marine snails, have evolved in the seas surrounding New Zealand. [14] [15] [16]

Endemism

The siphon whelk Penion ormesi is a large, marine snail species endemic to New Zealand. Penion jeakingsi.png
The siphon whelk Penion ormesi is a large, marine snail species endemic to New Zealand.

New Zealand has a high number of endemic species, [17] such as:

Of New Zealand's estimated 20,000 fungi species, only about 4,500 are known. [19] New Zealand also has two subspecies of endemic cetaceans, Hector's dolphin and its close relative Maui's dolphin.

Human impact

The common brushtail possum is one of the 33 species of land mammal introduced to New Zealand by humans. Brushtail possum.jpg
The common brushtail possum is one of the 33 species of land mammal introduced to New Zealand by humans.
Large areas of native bush has been logged and cleared for pasture in the past. Native bush in Waiohine Gorge.jpg
Large areas of native bush has been logged and cleared for pasture in the past.

The arrival of humans has impacted the natural environment, posing a threat to native species and resulting in the extinction of several. This is predominantly because many species in New Zealand have evolved in the absence of mammalian predators for the last few million years (a situation known as ecological naivety), thus losing the responses needed to deal with such threats. Humans brought with them to New Zealand (intentionally or otherwise) a host of attendant species, starting with the Polynesian rat, and now including stoats, weasels, black rats, Norway rats, brushtailed possums, and feral cats and dogs, as well as herbivores such as deer, wallabies and tahr (a wild goat species from the Himalayas), which detrimentally affect native vegetation. [20]

The silvereye is one of several species of birds that have introduced themselves to New Zealand in the wake of human settlement. Silvereye3.jpg
The silvereye is one of several species of birds that have introduced themselves to New Zealand in the wake of human settlement.

The date of arrival of the first human settlers (the antecedents of the Māori) in New Zealand is given as around 1300 CE, [21] and evidence suggests that Polynesian rats seemed to have arrived at a similar date. [22] Their arrival set off a first wave of extinctions, eliminating smaller defenceless ground nesting birds such as the New Zealand owlet-nightjar. A second wave of extinctions was triggered by the arrival of the Māori, who hunted many of the larger species, such as the moa, adzebill and several large ducks and geese, for food. The Haast's eagle and Eyles's harrier are thought to have gone extinct due to the loss of their food source. A third wave of extinction began with the arrival of European settlers, who brought with them numerous new mammal species, particularly the predatory domestic cat, and initiated more habitat modification. In all, over 50% of New Zealand's bird species are considered extinct, [23] along with a species of bat (the New Zealand greater short-tailed bat), several frogs (only four frog types remain), a freshwater fish (the New Zealand greyling), skinks, and geckos.

In some instances, the extinction of New Zealand's native fauna has brought about a natural colonisation from Australia. In the case of the silvereye, which colonised New Zealand in the 19th century, it had no relative in New Zealand's original fauna and is now restricted to newer man-made niches. In the case of the black swan (which was originally thought to have been introduced by humans but is now suspected to have self-introduced), the invading species re-occupied part of its former range (the extinct New Zealand swan is now believed to be a subspecies of the black swan). The arrival of the pūkeko and the swamp harrier is more interesting, mirroring the arrival of related species in the past, before they evolved into the takahē and the Eyles's harrier. Once these specialised birds declined and (in the case of the harrier) became extinct, their niches were available and colonisation could occur again. [24] [25]

Management

The New Zealand government, through the Department of Conservation, works aggressively to protect what remains of New Zealand's biological heritage. It has pioneered work on island restoration where offshore islands are systematically cleared of introduced species such as goats, feral cats and rats. This then allows the re-introduction of native species that can hopefully flourish in the absence of non-native predators and competitors. The longest running project of this type is on Cuvier Island, [26] but other islands are also being used such as Tiritiri Matangi and Mangere Island. Establishment of conservation areas is not restricted to islands however and several ecological islands have been established on the New Zealand mainland which are isolated by the use of pest-exclusion fences.

State of biodiversity 2020

State of biodiversity in New Zealand, 2020 State of biodiversity in New Zealand, 2020.png
State of biodiversity in New Zealand, 2020

See also

Related Research Articles

<span class="mw-page-title-main">Moa</span> Extinct order of birds

Moa are an extinct group of flightless birds formerly endemic to New Zealand. During the Late Pleistocene-Holocene, there were nine species. The two largest species, Dinornis robustus and Dinornis novaezelandiae, reached about 3.6 metres (12 ft) in height with neck outstretched, and weighed about 230 kilograms (510 lb) while the smallest, the bush moa, was around the size of a turkey. Estimates of the moa population when Polynesians settled New Zealand circa 1300 vary between 58,000 and approximately 2.5 million.

<span class="mw-page-title-main">Anatidae</span> Biological family of water birds

The Anatidae are the biological family of water birds that includes ducks, geese, and swans. The family has a cosmopolitan distribution, occurring on all the world's continents except Antarctica. These birds are adapted for swimming, floating on the water surface, and, in some cases, diving in at least shallow water. The family contains around 174 species in 43 genera.

<span class="mw-page-title-main">Rail (bird)</span> Family of birds

Rails are a large, cosmopolitan family of small- to medium-sized terrestrial and/or semi-amphibious birds. The family exhibits considerable diversity in its forms, and includes such ubiquitous species as the crakes, coots, and gallinule; other rail species are extremely rare or endangered. Many are associated with wetland habitats, some being semi-aquatic like waterfowl, but many more are wading birds or shorebirds. The ideal rail habitats are marsh areas, including rice paddies, and flooded fields or open forest. They are especially fond of dense vegetation for nesting. The rail family is found in every terrestrial habitat with the exception of dry desert, polar or freezing regions, and alpine areas. Members of Rallidae occur on every continent except Antarctica. Numerous unique island species are known.

<span class="mw-page-title-main">New Zealand wren</span> Family of birds

The New Zealand wrens are a family (Acanthisittidae) of tiny passerines endemic to New Zealand. They were represented by seven Holocene species in four or five genera, although only two species in two genera survive today. They are understood to form a distinct lineage within the passerines, but authorities differ on their assignment to the oscines or suboscines. More recent studies suggest that they form a third, most ancient, suborder Acanthisitti and have no living close relatives at all. They are called "wrens" because of similarities in appearance and behaviour to the true wrens (Troglodytidae) but are not members of that family.

<span class="mw-page-title-main">Fauna of New Zealand</span> Animal species of New Zealand

The animals of New Zealand, part of its biota, have an unusual history because, before the arrival of humans, less than 900 years ago, the country was mostly free of mammals, except those that could swim there or fly there (bats). However, as recently as the Miocene, it was home to the terrestrial Saint Bathans mammal, implying that mammals had been present since the island had broken away from other landmasses. The absence of mammals meant that all of the ecological niches occupied by mammals elsewhere were occupied instead by either insects or birds, leading to an unusually large number of flightless birds, including the kiwi, the weka, the moa, the takahē, and the kākāpō.

<span class="mw-page-title-main">Biodiversity of New Caledonia</span> Variety of life in the New Caledonia archipelago and its seas

The biodiversity of New Caledonia is of exceptional biological and paleoecological interest. It is frequently referred to as a biodiversity hotspot. The country is a large South Pacific archipelago with a total land area of more than 18,000 square kilometres (6,900 sq mi). The terrain includes a variety of reefs, atolls, small islands, and a variety of topographical and edaphic regions on the largest island, all of which promote the development of unusually concentrated biodiversity. The region's climate is oceanic and tropical.

<span class="mw-page-title-main">Adzebill</span> Extinct genus of birds

The adzebills, genus Aptornis, were two closely related bird species, the North Island adzebill,, and the South Island adzebill,, of the extinct family Aptornithidae. The family was endemic to New Zealand. A tentative fossil species,, is known from the Miocene Saint Bathans fauna.

<span class="mw-page-title-main">New Caledonia rain forests</span>

The New Caledonia rain forests are a terrestrial ecoregion, located in New Caledonia in the South Pacific. It is a tropical moist broadleaf forest ecoregion, part of the Australasian realm.

<span class="mw-page-title-main">Mystacinidae</span> Family of bats

Mystacinidae is a family of unusual bats, the New Zealand short-tailed bats. There is one living genus, Mystacina, with two species, one of which could have possibly become extinct in the 1960s. They are medium-sized bats, about 6 centimetres (2.4 in) in length, with grey, velvety fur.

An ecological island is a term used in New Zealand, and increasingly in Australia, to refer to an area of land isolated by natural or artificial means from the surrounding land, where a natural micro-habitat exists amidst a larger differing ecosystem. In New Zealand the term is used to refer to one of several types of nationally protected areas.

<span class="mw-page-title-main">Birds of New Zealand</span>

The birds of New Zealand evolved into an avifauna that included many endemic species found in no other country. As an island archipelago, New Zealand accumulated bird diversity, and when Captain James Cook arrived in the 1770s he noted that the bird song was deafening.

Neozealandia is a biogeographic province of the Antarctic Realm according to the classification developed by Miklos Udvardy in 1975.

The Saint Bathans mammal is a currently unnamed extinct primitive mammal from the Early Miocene of New Zealand. A member of the Saint Bathans fauna, it is notable for being a late-surviving "archaic" mammal species, neither a placental nor a marsupial. It also provides evidence that flightless fully terrestrial mammals did in fact once live in Zealandia. This is in contrast to modern New Zealand, where bats, cetaceans and seals are the only non-introduced mammals in the otherwise bird-dominated faunas.

The natural history of New Zealand began when the landmass Zealandia broke away from the supercontinent Gondwana in the Cretaceous period. Before this time, Zealandia shared its past with Australia and Antarctica. Since this separation, the New Zealand landscape has evolved in physical isolation, although much of its current biota has more recent connections with species on other landmasses. The exclusively natural history of the country ended in about 1300 AD, when humans first settled, and the country's environmental history began. The period from 1300 AD to today coincides with the extinction of many of New Zealand's unique species that had evolved there.

<span class="mw-page-title-main">Environment of New Zealand</span>

The environment of New Zealand is characterised by an endemic flora and fauna which has evolved in near isolation from the rest of the world. The main islands of New Zealand span two biomes, temperate and subtropical, complicated by large mountainous areas above the tree line. There are also numerous smaller islands which extend into the subantarctic. The prevailing weather systems bring significantly more rain to the west of the country. New Zealand's territorial waters cover a much larger area than its landmass and extend over the continental shelf and abyssal plateau in the South Pacific Ocean, Tasman Sea and Southern ocean.

<span class="mw-page-title-main">New Zealand parrot</span> Family of birds

The New Zealand parrot family, Strigopidae, consists of at least three genera of parrots – Nestor, Strigops, the fossil Nelepsittacus, and probably the fossil Heracles. The genus Nestor consists of the kea, kākā, Norfolk kākā and Chatham kākā, while the genus Strigops contains the iconic kākāpō. All extant species are endemic to New Zealand. The species of the genus Nelepsittacus were endemics of the main islands, while the two extinct species of the genus Nestor were found at the nearby oceanic islands such as Chatham Island of New Zealand, and Norfolk Island and adjacent Phillip Island.

<span class="mw-page-title-main">Mammals of New Zealand</span>

Prior to human settlement, the mammals of New Zealand consisted entirely of several species of bat and several dozen marine mammal species. Far earlier, during the Miocene, at least one "archaic" terrestrial mammal species is known to have existed, the Saint Bathans mammal. The Māori brought the kurī and kiore in about 1250 CE, and Europeans from 1769 onwards brought the pig, mice, two additional species of rats, weasels, stoats, ferrets and possums and many other species, some of which cause conservation problems for indigenous species.

<span class="mw-page-title-main">Ecology of Tasmania</span>

The biodiversity of Tasmania is of exceptional biological and paleoecological interest. A state of Australia, it is a large South Pacific archipelago of one large main island and a range of smaller islands. The terrain includes a variety of reefs, atolls, many small islands, and a variety of topographical and edaphic regions on the largest island, all of which promote the development of unusually concentrated biodiversity. During long periods geographically and genetically isolated, it is known for its unique flora and fauna. The region's climate is oceanic.

<i>Proapteryx</i> Extinct genus of birds

Proapteryx micromeros is an extinct kiwi known from the 16–19 million-year-old early Miocene sediments of the St Bathans Fauna of Otago, New Zealand.

<span class="mw-page-title-main">St Bathans fauna</span> Fossil deposit from the Early Miocene period in Central Otago, New Zealand

The St Bathans fauna is found in the lower Bannockburn Formation of the Manuherikia Group of Central Otago, in the South Island of New Zealand. It comprises a suite of fossilised prehistoric animals from the late Early Miocene (Altonian) period, with an age range of 19–16 million years ago.

References

  1. Campbell, Hamish; Gerard Hutching (2007). In Search of Ancient New Zealand. North Shore, New Zealand: Penguin Books. p. 121. ISBN   978-0-14-302088-2.
  2. Nielsen, S. V.; Bauer, A. M.; Jackman, T. R.; Hitchmough, R. A.; Daugherty, C. H. (2011). "New Zealand geckos (Diplodactylidae): Cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities". Molecular Phylogenetics and Evolution. 59 (1): 1–22. doi:10.1016/j.ympev.2010.12.007. PMID   21184833.
  3. Trewick, SA; Paterson, AM; Campbell, HJ (2007). "Hello New Zealand". Journal of Biogeography. 34: 1–6. doi: 10.1111/j.1365-2699.2006.01643.x .
  4. PDF Trewick SA, Morgan-Richards M. 2009 New Zealand Biology. Pages 665-673 in Encyclopedia of Islands (Eds R.G. Gillespie and D.A. Clague). University of California Press, Berkeley.
  5. "Searching for the lost continent of Zealandia". The Dominion Post. 29 September 2007. Archived from the original on 12 February 2009. Retrieved 9 October 2007. We cannot categorically say that there has always been land here. The geological evidence at present is too weak, so we are logically forced to consider the possibility that the whole of Zealandia may have sunk.
  6. Campbell, Hamish; Gerard Hutching (2007). In Search of Ancient New Zealand. North Shore, New Zealand: Penguin Books. pp. 166–167. ISBN   978-0-14-302088-2.
  7. Morgan‐Richards, M.; Smissen, R. D.; Shepherd, L. D.; Wallis, G. P.; Hayward, J. J.; Chan, C. H.; Chambers, G. K.; Chapman, H. M. (2009). "A review of genetic analyses of hybridisation in New Zealand". Journal of the Royal Society of New Zealand. 39: 15–34. doi:10.1080/03014220909510561.
  8. Trewick, S. A.; Gibb, G. C. (2010). "Vicars, tramps and assembly of the New Zealand avifauna: A review of molecular phylogenetic evidence". Ibis. 152 (2): 226. doi: 10.1111/j.1474-919X.2010.01018.x .
  9. Wallis, GP; Trewick, SA (2009). "New Zealand phylogeography: evolution on a small continent". Molecular Ecology. 18 (17): 3548–3580. doi: 10.1111/j.1365-294X.2009.04294.x . PMID   19674312.
  10. Grantham, H. S.; Duncan, A.; Evans, T. D.; et al. (2020). "Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity – Supplementary Material". Nature Communications . 11 (1): 5978. doi: 10.1038/s41467-020-19493-3 . ISSN   2041-1723. PMC   7723057 . PMID   33293507.
  11. Fraser, Ceridwen I.; Hay, Cameron H.; Spencer, Hamish G.; Waters, Jonathan M. (2009). "Genetic and morphological analyses of the southern bull kelp Durvillaea antarctica (Phaeophyceae: Durvillaeales) in New Zealand reveal cryptic species". Journal of Phycology. 45 (2): 436–443. doi:10.1111/j.1529-8817.2009.00658.x. PMID   27033822. S2CID   18309093.
  12. Fraser, Ceridwen I.; Velásquez, Marcel; Nelson, Wendy A.; Macaya, Erasmo C.A.; Hay, Cameron (2020). "The biogeographic importance of buoyancy in macroalgae: a case study of the southern bull‐kelp genus Durvillaea (Phaeophyceae), including descriptions of two new species". Journal of Phycology. 56 (1): 23–36. doi: 10.1111/jpy.12939 . PMID   31642057.
  13. Worthy, Trevor; Hand, SJ; Worthy, TH; Archer, M; Worthy, JP; Tennyson, AJD; Scofield, RP (2013). "Miocene mystacinids (Chiroptera, Noctilionoidea) indicate a long history for endemic bats in New Zealand". Journal of Vertebrate Paleontology. 33 (6): 1442–1448. doi:10.1080/02724634.2013.775950. S2CID   85925160.
  14. Powell A. W. B., New Zealand Mollusca, William Collins Publishers Ltd, Auckland, New Zealand 1979 ISBN   0-00-216906-1
  15. Beu, A.G. and Maxwell, P.A. 1990. Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Bulletin, 58.
  16. Vaux, Felix; Hills, Simon F.K.; Marshall, Bruce A.; Trewick, Steven A.; Morgan-Richards, Mary (2017). "A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record". Molecular Phylogenetics and Evolution. 114 (2017): 367–381. doi:10.1016/j.ympev.2017.06.018. PMID   28669812.
  17. Brouwer, Floor; Fox, Glenn; Jongeneel, Roel; Jongeneel, R. A. (2012). The Economics of Regulation in Agriculture: Compliance with Public and Private Standards. CABI. p. 88. ISBN   9781845935573.
  18. Willan, R.C., de C. Cook, S., Spencer, H.G., Creese, R.G., O’Shea, S., Jackson, G.D. Phylum Mollusca. In: de C. Cook, S.C. (eds.), New Zealand Coastal Marine Invertebrates 1, 296 – 298. Canterbury University Press, Christchurch, New Zealand ISBN   978-1877257-60-5
  19. "What happens in New Zealand... Stays in Vegas". New Zealand Trade and Enterprise. 11 March 2017. Retrieved 29 April 2017.[ permanent dead link ]
  20. "Introduced Plants and Animals". Te Ara: The Encyclopedia of New Zealand . Retrieved 15 June 2022.
  21. "Rat remains help date New Zealand's colonisation". New Scientist . 4 June 2008. Retrieved 30 June 2018.
  22. Wilmshurst, Janet M.; Anderson, Atholl J.; Higham, Thomas F. G.; Worthy, Trevor H. (2008). "Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat". Proceedings of the National Academy of Sciences. 105 (22): 7676–7680. Bibcode:2008PNAS..105.7676W. doi: 10.1073/pnas.0801507105 . PMC   2409139 . PMID   18523023.
  23. Brockie, Bob (24 September 2007). "Native plants and animals – overview". Te Ara: The Encyclopedia of New Zealand. Retrieved 15 June 2022.
  24. Trewick SA. 2011. Vicars and vagrants: Assembly of the New Zealand avifauna. Australasian Science 32: 24-27.
  25. Trewick SA, Morgan-Richards M. 2014. New Zealand Wild Life. Penguin, New Zealand. ISBN   9780143568896
  26. Cuvier Island restoration Archived 30 September 2007 at the Wayback Machine (from the Department of Conservation website)
  27. Briefing to the incoming Minister of Conservation Archived 26 January 2021 at the Wayback Machine , October 2020, Department of Conservation, New Zealand Government. ISBN   978-0-9951392-4-4.

Further reading

Volume 1 ISBN   9781877257728, Volume 2 ISBN   9781877257933, Volume 3 ISBN   9781927145050
Journal articles