Caulerpa

Last updated

Caulerpa
Caulerpa prolifera.JPG
Caulerpa prolifera
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Viridiplantae
Division: Chlorophyta
Class: Ulvophyceae
Order: Bryopsidales
Family: Caulerpaceae
Genus: Caulerpa
J.V. Lamouroux, 1809
Type species
Caulerpa prolifera
(Forsskål) J.V. Lamouroux, 1809 [1]
Species [2]

About 101

Caulerpa is a genus of seaweeds in the family Caulerpaceae (among the green algae). They are unusual because they consist of only one cell with many nuclei, making them among the biggest single cells in the world.

Contents

Referring to the crawling habit of its thallus, the name means 'stem (that) creeps', from the Ancient Greek kaulos ( καυλός , ‘stalk’) and herpo ( ἕρπω , ‘to creep’). [3]

Taxonomy and nomenclature

First described by Jean Vincent Lamouroux in 1809, Caulerpa is the only genus under the family Caulerpaceae, from the order Bryopsidales, class Ulvophyceae, and phylum Chlorophyta. [4] Through the use of tufA gene sequencing, it was revealed that Pseudochlorodesmis F. Børgesen was a sister clade of Caulerpa. [5] Cremen et al. [6] proposed a new classification scheme in Bryopsidales, wherein Caulerpaceae and Halimedaceae were described as sister families.

Species discrimination via morphology-based identification is often hampered by the high degree of variation among traits. Thus, several species are often misidentified without the use of molecular analyses. [7] As of 2019, there are 101 accepted species, with 40 varieties and 67 forms. [8] [9]

Biology

Caulerpa species support their large cell size by having the cytoplasm circulate constantly, supported by a network of microtubules. This behavior was known in 1967. [10]

The cytoplasm does not leak out when the cell is cut. Regeneration is directional, with rhizoids at the bottom and fronds at the top. [11]

The genus produces a number of secondary metabolites thought to be related to its toxicity and peppery taste. These include the red pigment alkaloid caulerpin and its derivative caulerchlorin and the amine mixture caulerpicin.

Morphology

External characteristics

Caulerpa racemosa showing irregular vesiculate ramuli (Hobgood, n.d.) Caulerpa racemosa algae.jpg
Caulerpa racemosa showing irregular vesiculate ramuli (Hobgood, n.d.)

The genus Caulerpa exhibits several different growth forms. They possess a stolon with rhizoids which grow downward, anchoring the plant to the substrate. The stolons support upright fronds or leaves known as assimilators. The structure of the assimilator may be ligulate (leaf-like, e.g. Caulerpa prolifera), or they may have a central axis known as a rachis. The rachis may have lateral branchlets known as ramuli which themselves come in different forms (terete, turbinate, clavate, peltate, falcate, vesiculate) and arrangements: distichous - ramuli are arranged evenly opposite each other (e.g. Caulerpa taxifolia), irregular - vesiculate ramuli with no distinct arrangement (e.g. Caulerpa racemosa), verticillate - whorled ramuli (e.g. Caulerpa cuppresoides). [4]

Internal anatomy

Caulerpa is coenocytic, meaning it has a multinucleate thallus organization. It is also siphonous, meaning unlike other algae, the thallus and the nuclei are not separated by cell walls. They are instead one long mass of protoplasm surrounded by a single cell wall. [12] The genus also possesses trabeculae, which are inward growing cell wall extensions that pass through the central lumen of siphons. It is hypothesized that these provide the thallus with structural support, facilitate diffusion to the inner cytoplasm, and can possibly help in determining cell shape - which may contribute to the diversity of growth forms found in the genus. [13]

Distribution

Caulerpa is mostly found in tropical regions, however its distribution may also extend up to temperate locations. Diversity is highest in the Caribbean and the Indo-Malay region, as well as in southern Australia, where a majority of Caulerpa species are endemic. [14] [4]

Ecology

The genus is typically found in shallow intertidal zones and can reach up to depths of 100 meters. They are known to be able to adapt and thrive in different environmental conditions, which contributes to their potential for becoming invasive species. Some of their traits include having a high tolerance for a wide range of temperatures, their capacity for asexual reproduction through rhizoid extension and fragmentation, their fast growth rate, as well as their capacity for nutrient intake from sediments through their rhizoids. [4] [15] This last trait gives them a competitive edge over other macroalgal species who mainly absorb nutrients from the water column. [16]

Life history

Many studies on the life cycle of Caulerpa have been found to contradict each other, leading researchers to conclude that it varies with species and geographical region. [4] Earlier research revealed that Caulerpa has a diplontic life cycle with a diploid vegetative phase and haploid biflagellate gametes. However, it was later found that ploidy status and genome size can vary within and between species. [17] [18] [19]

Exploitation and cultivation

Edible fresh lato (Caulerpa lentillifera) sold at a fish market in the Philippines USAID Measuring Impact Conservation Enterprise Retrospective (Philippines; Nagkakaisang Tribu ng Palawan) (26420465388).jpg
Edible fresh latô ( Caulerpa lentillifera ) sold at a fish market in the Philippines

Some species of Caulerpa are edible. The two most commonly eaten are Caulerpa lentillifera and Caulerpa racemosa , both called "sea grapes" in English. Both are traditionally harvested in the wild and sold in local markets in Southeast Asia, Oceania, and East Asia. They are eaten raw in salads and have a characteristic "sea" flavor and a crunchy texture. [20]

Both species are cultivated in aquaculture. Their cultivation began in the 1950s in Cebu, Philippines, after accidental introduction of C. lentillifera to fish ponds. [21] Cultivation of C. lentillifera continued in Japan in 1986, where it was cultivated in tanks in the tropical waters of Okinawa. [22] Commercial cultivation has since spread to other countries, including Vietnam, Taiwan, and China (in Fujian and Hainan). Most are for domestic consumption, but they are also exported to Japan. [23]

Cultivation of Caulerpa is convenient because they can propagate through fragmentation. There are several farming techniques being used to cultivate Caulerpa, which typically involve tying fragments to different types of infrastructure. Many Pacific countries such as Japan, Philippines, Vietnam, and Samoa use the off-bottom method, where the seaweeds are grown a few meters above the ground on cages or trays. [24] The bottom-planting method is also used in the Philippines, and involves growing the Caulerpa on a substrate. [25] Land-based raceways in hatchery-type facilities offer a more controlled environment for cultures, and have been used more in recent years. [4] [24]

Chemical composition

Caulerpa contains a high amount of iron (up to 81.3 mg per 100 g of dry matter in C. racemosa), [26] magnesium, and calcium. [24] Water content is species-specific and generally ranges from 75 - 94%. [24] The genus is known to have a high bioaccumulation rate, [27] [20] [28] which can make it less than ideal to consume on a regular basis. Carbohydrate content can range from 3.6 - 83.2% of dry matter depending on the species. [24] The main pigments of Caulerpa are chlorophyll a and b. [20] It has a high diversity of chemical compounds which have pharmaceutical potential. Although the genus is known to exhibit high toxicity, it was found to be of low risk to humans. [29]

Utilization

Aside from being a source of food, Caulerpa has several uses from bioremediation, to fertilizer, and health and wellness. [4] The anti-oxidant compounds of Caulerpa have been well-studied, and these are used in treating various diseases and health conditions such as cancer and cardiovascular disorders. [26] [30] [31] [32] Caulerpa has been shown to be effective in filtering water used in culturing fish, mollusks, and shrimp [33] (in particular C. lentillifera [34] ). The use of Caulerpa as a biofertilizer has also been studied particularly in India, where fertilizers composed of 25% Caulerpa extracts enhanced the growth and reduced the total sugar content, among other things, of Vigna mungo. [35] [36] [37]

Invasive behaviour

Another species, Caulerpa taxifolia , has become an invasive species in the Mediterranean Sea, Australia and southern California (where it has since been eradicated). In U.S. waters, the Mediterranean strain of Caulerpa taxifolia is listed as a federal noxious weed, under the Plant Protection Act. The Aquatic Nuisance Species Taskforce has also created a National Management Plan for the Genus Caulerpa. The state of California also prohibits possession of nine different species of Caulerpa.

It is thought that Caulerpa species have such invasive properties in these regions due to their capability to thrive in temperate waters, along with their freedom from natural predators. Most Caulerpa species evolved in tropical waters, where herbivores have immunity to toxic compounds (mainly caulerpicin) within the alga. Temperate water herbivores have no natural immunity to these toxins, allowing Caulerpa to grow unchecked if introduced to temperate waters.

C. racemosa has recently been found in waters around Crete, where it is thought to have contributed to a significant reduction in fisheries. The alga has invaded the area from the warmer waters of the Red Sea.

C. cylindracea , which is native to Australia, has also become an invasive species in the Mediterranean. [38]

Exotic seaweeds Caulerpa brachypus and Caulerpa parvifolia have been found in New Zealand waters at Great Barrier Island (Aotea) and Great Mercury Island (Ahuahu). [39]

Use in aquariums

Caulerpa is common in the aquarium hobby as a nitrate absorber because of its rapid growth under relatively adverse conditions. It may also be used in refugiums for a long-term nitrite absorber. Many introductions of invasive Caulerpa to the wild are thought to have occurred via aquarium dumping although there is no proof that this is so. For this reason, some aquarium hobbyists have begun using Chaetomorpha or an algae scrubber instead. [40] [41]

Species

Feather algae, Caulerpa sertularioides at 11 metres' depth on ridge Feather algae, Caulerpa sertularioides at 11 meters depth on ridge.jpg
Feather algae, Caulerpa sertularioides at 11 metres' depth on ridge
Oval sea grapes, Caulerpa racemosa var. clavifera, at 5 metres' depth Oval sea grapes, Caulerpa racemosa var clavifera, at 5 meters depth.jpg
Oval sea grapes, Caulerpa racemosa var. clavifera, at 5 metres' depth

The species currently recognized are: [1]

See also

Related Research Articles

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta is a taxon of green algae informally called chlorophytes. The name is used in two very different senses, so care is needed to determine the use by a particular author. In older classification systems, it is a highly paraphyletic group of all the green algae within the green plants (Viridiplantae) and thus includes about 7,000 species of mostly aquatic photosynthetic eukaryotic organisms. In newer classifications, it is the sister clade of the streptophytes/charophytes. The clade Streptophyta consists of the Charophyta in which the Embryophyta emerged. In this latter sense the Chlorophyta includes only about 4,300 species. About 90% of all known species live in freshwater. Like the land plants, green algae contain chlorophyll a and chlorophyll b and store food as starch in their plastids.

<i>Caulerpa taxifolia</i> Species of alga

Caulerpa taxifolia is a species of green seaweed, an alga of the genus Caulerpa, native to tropical waters of the Pacific Ocean, Indian Ocean, and Caribbean Sea. The species name taxifolia arises from the resemblance of its leaf-like fronds to those of the yew (Taxus).

<i>Acetabularia</i> Green algae genus, family Polyphysaceae

Acetabularia is a genus of green algae in the family Polyphysaceae. Typically found in subtropical waters, Acetabularia is a single-celled organism, but gigantic in size and complex in form, making it an excellent model organism for studying cell biology. In form, the mature Acetabularia resembles the round leaves of a nasturtium, is 4 to 10 centimetres tall and has three anatomical parts: a bottom rhizoid that resembles a set of short roots; a long stalk in the middle; and a top umbrella of branches that may fuse into a cap. Unlike other giant unicellular organisms, which are multinucleate, members of this genus a single nucleus located in the rhizoid and allows the cell to regenerate completely if its cap is removed. The caps of two Acetabularia may also be exchanged, even from two different species. In addition, if a piece of the stem is removed, with no access to the nucleus in the rhizoid, this isolated stem piece will also grow a new cap.

<i>Ascophyllum</i> Species of seaweed

Ascophyllum nodosum is a large, common cold water seaweed or brown alga (Phaeophyceae) in the family Fucaceae. A. nodosum is also known in localities as feamainn bhuí, rockweed, Norwegian kelp, knotted kelp, knotted wrack or egg wrack. It is a seaweed that dominates the intertidal zone and grows only in the northern Atlantic Ocean, along the north-western coast of Europe including east Greenland and the north-eastern coast of North America, its range further south of these latitudes being limited by warmer ocean waters. Ascophyllum nodosum has been used numerous times in scientific research and has even been found to benefit humans through consumption.

<i>Caulerpa racemosa</i> Species of alga

Caulerpa racemosa is a species of edible green alga, a seaweed in the family Caulerpaceae. It is commonly known as sea grapes and is found in many areas of shallow sea around the world. Despite the name, it is not related to grapes. There are a number of different forms and varieties, and one that appeared in the Mediterranean Sea in 1990, which is giving cause for concern as an invasive species.

<i>Halimeda</i> Genus of algae

Halimeda is a genus of green macroalgae. The algal body (thallus) is composed of calcified green segments. Calcium carbonate is deposited in its tissues, making it inedible to most herbivores. However one species, Halimeda tuna, was described as pleasant to eat with oil, vinegar, and salt.

<i>Codium</i> Genus of algae

Codium is a genus of edible green macroalgae under the order Bryopsidales. The genus name is derived from a Greek word that pertains to the soft texture of its thallus. One of the foremost experts on Codium taxonomy was Paul Claude Silva at the University of California, Berkeley. P.C. Silva was able to describe 36 species for the genus and in honor of his work on Codium, the species C. silvae was named after the late professor.

<i>Udotea</i> Genus of algae

Udotea is a genus of green algae in the family Udoteaceae.

<i>Turbinaria</i> (alga) Genus of seaweeds

Turbinaria is a genus of brown algae (Phaeophyceae) found primarily in tropical marine waters. It generally grows on rocky substrates. In tropical Turbinaria species that are often preferentially consumed by herbivorous fishes and echinoids, there is a relatively low level of phenolics and tannins.

<i>Gelidium</i> Genus of algae

Gelidium is a genus of thalloid red algae comprising 134 species. Its members are known by a number of common names.

<i>Caulerpa lentillifera</i> Species of seaweed

Caulerpa lentillifera or sea grape is a species of ulvophyte green algae from coastal regions in the Asia-Pacific. This seaweed is one of the favored species of edible Caulerpa due to its soft and succulent texture. It is traditionally eaten in the cuisines of Southeast Asia, Oceania, and East Asia. It was first commercially cultivated in the Philippines in the 1950s, followed by Japan in 1968. Both countries remain the top consumers of C. lentillifera. Its cultivation has since spread to other countries, including Vietnam, Taiwan, and China. C. lentillifera, along with C. racemosa, are also known as sea grapes or green caviar in English.

<span class="mw-page-title-main">Edible seaweed</span> Algae that can be eaten and used for culinary purposes

Edible seaweed, or sea vegetables, are seaweeds that can be eaten and used for culinary purposes. They typically contain high amounts of fiber. They may belong to one of several groups of multicellular algae: the red algae, green algae, and brown algae. Seaweeds are also harvested or cultivated for the extraction of polysaccharides such as alginate, agar and carrageenan, gelatinous substances collectively known as hydrocolloids or phycocolloids. Hydrocolloids have attained commercial significance, especially in food production as food additives. The food industry exploits the gelling, water-retention, emulsifying and other physical properties of these hydrocolloids.

<i>Sargassum muticum</i> Species of seaweed

Sargassum muticum, commonly known as Japanese wireweed or japweed, is a large brown seaweed of the genus Sargassum. It is an invasive seaweed with high growth rate. It has an efficient dispersion thanks to its floats.

<span class="mw-page-title-main">Ice-ice</span> Disease condition of seaweed

Ice-ice is a disease condition of seaweed. Ice-ice is caused when changes in salinity, ocean temperature and light intensity cause stress to seaweeds, making them produce a "moist organic substance" that attracts bacteria in the water and induces the characteristic "whitening" and hardening of the seaweed's tissues. Bacteria involved include those in the Vibrio-Aeromonas and Cytophaga-Flavobacteria complexes. The bacteria lyse epidermal cells and chloroplasts, turning the seaweed tissue white. The disease is known from seaweeds including Kappaphycus alvarezii and Eucheuma denticulatum, economically important sources of carrageenan. In countries where seaweed is harvested as a crop, ice-ice can wreak havoc on yields. Zamboanga, Philippines, had an outbreak of ice-ice in 2004, and Bali, Indonesia, experienced an outbreak in 2009. A rise in surface sea temperatures of 2–3 degrees Celsius can trigger ice-ice outbreaks.

<i>Caulerpa prolifera</i> Species of alga

Caulerpa prolifera is a species of green alga, a seaweed in the family Caulerpaceae. It is the type species of the genus Caulerpa, the type location being Alexandria, Egypt. It grows rapidly and forms a dense mass of vegetation on shallow sandy areas of the sea.

<span class="mw-page-title-main">Aquaculture of giant kelp</span> Cultivation of seaweed

Aquaculture of giant kelp, Macrocystis pyrifera, is the cultivation of kelp for uses such as food, dietary supplements or potash. Giant kelp contains iodine, potassium, other minerals vitamins and carbohydrates.

<i>Caulerpa cylindracea</i> Species of seaweed

Caulerpa cylindracea is a species of seaweed in the Caulerpaceae family.

<i>Dictyota</i> Genus of seaweed in the family Dictyotaceae

Dictyota is a genus of brown seaweed in the family Dictyotaceae. Species are predominantly found in tropical and subtropical seas, and are known to contain numerous chemicals (diterpenes) which have potential medicinal value. As at the end of 2017, some 237 different diterpenes had been identified from across the genus.

<i>Ulva australis</i> Species of alga

Ulva australis, the southern sea lettuce, is a species of bright green coloured seaweed in the family Ulvaceae that can be found in waters around Australia and was first described by Swedish botanist Johan Erhard Areschoug. It is an edible green algae, although sometimes designated as a seaweed. General characteristics of Ulva australis include a smooth surface, distromatic blades, lobed fronds, and thallus color from dark green to light grass green. It can be either free floating or attached by a single holdfast. Its cells appear to be irregularly arranged, have rounded edges, and have shapes such as rectilinear, square, and pentagonal.

Susan Brawley is an American marine ecologist at the University of Maine known for her research on algae, especially algal reproduction. She was elected a fellow of the American Association for the Advancement of Science in 2012.

References

  1. 1 2 Caulerpa J.V. Lamouroux, 1809 World Register of Marine Species. Retrieved 2011-08-20
  2. Guiry, M.D.; Guiry, G.M. (2007). "Genus: Caulerpa taxonomy browser". AlgaeBase version 4.2 World-wide electronic publication, National University of Ireland, Galway. Retrieved 2007-09-23.
  3. Bold, Harold Charles; Wynne, Michael James (1985). Introduction to the algae. Prentice-Hall. p. 229. ISBN   9780134777467.
  4. 1 2 3 4 5 6 7 Zubia, Mayalen; Draisma, Stefano G. A.; Morrissey, Kathryn Lee; Varela-Álvarez, Elena; De Clerck, Olivier (2019-07-23). "Concise review of the genus Caulerpa J.V. Lamouroux". Journal of Applied Phycology. 32 (1): 23–39. doi:10.1007/s10811-019-01868-9. ISSN   0921-8971. S2CID   198191015.
  5. Draisma, Stefano G.A.; van Reine, Willem F. Prud'homme; Sauvage, Thomas; Belton, Gareth S.; Gurgel, C. Frederico D.; Lim, Phaik-Eem; Phang, Siew-Moi (2014-10-09). "A re-assessment of the infra-generic classification of the genusCaulerpa(Caulerpaceae, Chlorophyta) inferred from a time-calibrated molecular phylogeny". Journal of Phycology. 50 (6): 1020–1034. doi:10.1111/jpy.12231. ISSN   0022-3646. PMID   26988784. S2CID   35643976.
  6. Cremen, Ma. Chiela M.; Leliaert, Frederik; West, John; Lam, Daryl W.; Shimada, Satoshi; Lopez-Bautista, Juan M.; Verbruggen, Heroen (January 2019). "Reassessment of the classification of Bryopsidales (Chlorophyta) based on chloroplast phylogenomic analyses". Molecular Phylogenetics and Evolution. 130: 397–405. doi:10.1016/j.ympev.2018.09.009. hdl: 11343/233619 . ISSN   1055-7903. PMID   30227214. S2CID   52294820.
  7. Dumilag, Richard; Aguinaldo, Zae-Zae (2019). "DNA Barcodes of Caulerpa Species (Caulerpaceae, Chlorophyta) from the Northern Philippines". Philippine Journal of Science. 148 (2): 343–353 via researchgate.net.
  8. Belton, Gareth S.; Draisma, Stefano G.A.; Prud’homme van Reine, Willem F.; Huisman, John M.; Gurgel, C. Frederico D. (2019-05-04). "A taxonomic reassessment of Caulerpa (Chlorophyta, Caulerpaceae) in southern Australia, based on tuf A and rbc L sequence data". Phycologia. 58 (3): 234–253. doi:10.1080/00318884.2018.1542851. ISSN   0031-8884. S2CID   155548995.
  9. Guiry, MD; Guiry, GM (2019). "Algaebase". Algaebase. Archived from the original on 2001-08-04.
  10. Sabnis, DD; Jacobs, WP (December 1967). "Cytoplasmic streaming and microtubules in the coenocytic marine alga, Caulerpa prolifera". Journal of Cell Science. 2 (4): 465–72. doi:10.1242/jcs.2.4.465. PMID   6080540.
  11. Jacobs, William P. (December 1994). "Caulerpa". Scientific American. 271 (6): 100. Bibcode:1994SciAm.271f.100J. doi:10.1038/scientificamerican1294-100. This tropical alga is the world's largest single-celled organism. Yet it di›erentiates into a complex structure of leaves, stems and roots.
  12. Coneva, Viktoriya; Chitwood, Daniel H. (2015-04-24). "Plant architecture without multicellularity: quandaries over patterning and the soma-germline divide in siphonous algae". Frontiers in Plant Science. 6: 287. doi: 10.3389/fpls.2015.00287 . ISSN   1664-462X. PMC   4408836 . PMID   25964794.
  13. Fagerberg, Wayne R.; Hodges, Ellen (Lavoie); Dawes, Clinton J. (April 2010). "The Development and Potential Roles of Cell-Wall Trabeculae Incaulerpa Mexicana(Chlorophyta)". Journal of Phycology. 46 (2): 309–315. doi:10.1111/j.1529-8817.2009.00784.x. ISSN   0022-3646. S2CID   83822519.
  14. Prud'Homme Van Reine, W. F.; Verheij, E.; Coppejans, E. (October 1996). "Species and ecads of Caulerpa (Ulvophyceae, Chlorophyta) in Malesia (South-East Asia): Taxonomy, biogeography and biodiversity". Netherlands Journal of Aquatic Ecology. 30 (2–3): 83–98. doi:10.1007/bf02272230. ISSN   1380-8427. S2CID   8354568.
  15. Hoddle, Mark (2021). "Caulerpa Taxifolia or Killer Alga". Center for Invasive Species Research, University of California Riverside. Archived from the original on 2020-09-29. Retrieved 14 January 2022.
  16. Chisholm, J. R. M.; Dauga, C.; Ageron, E.; Grimont, P. A. D.; Jaubert, J. M. (May 1996). "'Roots' in mixotrophic algae". Nature. 381 (6581): 382. Bibcode:1996Natur.381..382C. doi: 10.1038/381382a0 . ISSN   0028-0836. S2CID   7730222.
  17. Clifton, Kenneth E.; Clifton, Lisa M. (1999). "The Phenology of Sexual Reproduction by Green Algae (Bryopsidales) on Caribbean Coral Reefs". Journal of Phycology. 35 (1): 24–34. doi:10.1046/j.1529-8817.1999.3510024.x. ISSN   0022-3646. S2CID   83704320.
  18. Collado-Vides L, Ruesink J (2002)Morphological plasticity and invasive potential. In: Williams E, Grosholz E (eds) International Caulerpa taxifolia Conference Proceedings. San Diego, California, pp 88–118
  19. Varela-Álvarez, Elena; Gómez Garreta, Amelia; Rull Lluch, Jordi; Salvador Soler, Noemi; Serrao, Ester A.; Siguán, María Antonia Ribera (2012-10-22). "Mediterranean Species of Caulerpa Are Polyploid with Smaller Genomes in the Invasive Ones". PLOS ONE. 7 (10): e47728. Bibcode:2012PLoSO...747728V. doi: 10.1371/journal.pone.0047728 . ISSN   1932-6203. PMC   3478284 . PMID   23110095.
  20. 1 2 3 Paul, Nicholas A.; Neveux, Nicolas; Magnusson, Marie; de Nys, Rocky (21 December 2013). "Comparative production and nutritional value of "sea grapes" — the tropical green seaweeds Caulerpa lentillifera and C. racemosa". Journal of Applied Phycology. doi:10.1007/s10811-013-0227-9. S2CID   15745994.
  21. Trono, Gavino C. Jr. (December 1988). Manual on Seaweed Culture. ASEAN/UNDP/FAO Regional Small-Scale Coastal Fisheries Development Project.
  22. Trono, G.C. Jr. "Caulerpa lentillifera (PROSEA)". Pl@ntUse. PROSEA (Plant Resources of South East Asia). Retrieved 26 October 2020.
  23. Chen, Xiaolin; Sun, Yuhao; Liu, Hong; Liu, Song; Qin, Yukun; Li, Pengcheng (2019). "Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications". PeerJ. 7: e6118. doi: 10.7717/peerj.6118 . PMC   6329336 . PMID   30643691.
  24. 1 2 3 4 5 de Gaillande, Clara; Payri, Claude; Remoissenet, Georges; Zubia, Mayalen (2016-07-31). "Caulerpa consumption, nutritional value and farming in the Indo-Pacific region". Journal of Applied Phycology. 29 (5): 2249–2266. doi:10.1007/s10811-016-0912-6. ISSN   0921-8971. S2CID   13674522.
  25. Trono, Gavino C. (1999), "Diversity of the seaweed flora of the Philippines and its utilization", Sixteenth International Seaweed Symposium, Dordrecht: Springer Netherlands, pp. 1–6, doi:10.1007/978-94-011-4449-0_1, ISBN   978-94-010-5909-1 , retrieved 2022-01-19
  26. 1 2 SANTOSO, Joko; GUNJI, Satoko; YOSHIE-STARK, Yumiko; SUZUKI, Takeshi (2006). "Mineral Contents of Indonesian Seaweeds and Mineral Solubility Affected by Basic Cooking". Food Science and Technology Research. 12 (1): 59–66. doi: 10.3136/fstr.12.59 . ISSN   1344-6606.
  27. Żbikowski, Radosław; Szefer, Piotr; Latała, Adam (October 2006). "Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic". Environmental Pollution. 143 (3): 435–448. doi:10.1016/j.envpol.2005.12.007. ISSN   0269-7491. PMID   16458400.
  28. Perryman, Shane E.; Lapong, Imran; Mustafa, Akhmad; Sabang, Rosiana; Rimmer, Michael A. (February 2017). "Potential of metal contamination to affect the food safety of seaweed ( Caulerpa spp.) cultured in coastal ponds in Sulawesi, Indonesia". Aquaculture Reports. 5: 27–33. doi: 10.1016/j.aqrep.2016.12.002 . ISSN   2352-5134.
  29. Parent-Massin, D. (January 1996). "Evaluation of the Toxicological Risk to Humans of Caulerpenyne Using Human Hematopoietic Progenitors, Melanocytes, and Keratinocytes in Culture". Journal of Toxicology and Environmental Health. 47 (1): 47–59. doi:10.1080/009841096161924. ISSN   0098-4108. PMID   8568911.
  30. Zubia, Mayalen; Robledo, Daniel; Freile-Pelegrin, Yolanda (2007-02-27). "Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico". Journal of Applied Phycology. 19 (5): 449–458. doi:10.1007/s10811-006-9152-5. ISSN   0921-8971. S2CID   38528211.
  31. Cavas, Levent; Yurdakoc, Kadir (July 2005). "A comparative study: Assessment of the antioxidant system in the invasive green alga Caulerpa racemosa and some macrophytes from the Mediterranean". Journal of Experimental Marine Biology and Ecology. 321 (1): 35–41. doi:10.1016/j.jembe.2004.12.035. ISSN   0022-0981.
  32. Matanjun, Patricia; Mohamed, Suhaila; Mustapha, Noordin Mohamed; Muhammad, Kharidah; Ming, Cheng Hwee (2008-05-02). "Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo". Journal of Applied Phycology. 20 (4): 367–373. doi:10.1007/s10811-007-9264-6. ISSN   0921-8971. S2CID   25999633.
  33. Paul, Nicholas A.; de Nys, Rocky (2008). "Promise and pitfalls of locally abundant seaweeds as biofilters for integrated aquaculture". Aquaculture. 281 (1–4): 49–55. doi:10.1016/j.aquaculture.2008.05.024. ISSN   0044-8486.
  34. Chaitanawisuti, Nilnaj; Santhaweesuk, Wannanee; Kritsanapuntu, Sirusa (2011-03-26). "Performance of the seaweeds Gracilaria salicornia and Caulerpa lentillifera as biofilters in a hatchery scale recirculating aquaculture system for juvenile spotted babylons (Babylonia areolata)". Aquaculture International. 19 (6): 1139–1150. doi:10.1007/s10499-011-9429-9. ISSN   0967-6120. S2CID   24792670.
  35. Kalaivanan, C; Venkatesalu, M (2012). "Effect of sea Caulerpa scalpelliformis weed liquid extract on growth and biochemical constituents of black gram (Vigna mungo (L.) Hepper)". Phycos. 42: 46–53.
  36. Abhilash, ES; Jisby, Jacob; Parayil, Sheeja P (2014-01-05). "Effect of sea weed (Caulerpa racemosa) extract on biochemical variations, growth and yield of Vigna mungo". Asia Pacific Journal of Environment Ecology and Sustainable Development. 1 (1): 3–5. doi: 10.3126/apjeesd.v1i1.9501 . ISSN   2382-5170.
  37. Mahadevi, B; Paul, JP (2014). "Influence of seaweed liquid fertilizer of Caulerpa peltata Lamour (green seaweed) on Pennisetum glaucum (L.) R. Br., in Indinthakarai Tamil Nadu, India". International Journal of Phytotherapy Research. 4: 139–143.
  38. Montefalcone, Monica; Morri, Carla; Parravicini, Valeriano; Bianchi, Carlo Nike (26 May 2015). "A tale of two invaders: divergent spreading kinetics of the alien green algae Caulerpa taxifolia and Caulerpa cylindracea". Biological Invasions. 17 (9): 2717–2728. doi:10.1007/s10530-015-0908-1. hdl: 11567/817427 . S2CID   1973648.
  39. "Caulerpa exotic seaweeds found at Great Barrier and Great Mercury islands | MPI - Ministry for Primary Industries. A New Zealand Government Department".
  40. "Nutrient Cycling In The Great Barrier Reef Aquarium. Proceedings of the 6th International Coral Reef Symposium, Australia, 1988, Vol. 2". Archived from the original on 2019-12-20. Retrieved 2011-03-19.
  41. Calfo, Anthony; Fenner, Robert (2003). Reef Invertebrates: An Essential Guide to Selection, Care and Compatibility. Reading Trees. p. 46. ISBN   978-0-9672630-3-8.

Further reading