Cyanolichen

Last updated
Bipartite and tripartite cyanolichens. A In the bipartite cyanolichen Peltigera scabrosa the cyanobacterial symbiont (Nostoc) forms a continuous layer just below the upper cortex of the lichen thallus. B Nephroma bellum is another example of bipartite cyanolichens. C In the tripartite cyanolichen Peltigera aphthosa the Nostoc symbiont is restricted to wart-like cephalodia (shown magnified) on the upper surface of the thallus, while the green algal symbiont (Coccomyxa) forms the photobiont layer. D Nephroma arcticum is another example of tripartite cyanolichens. The large cephalodia of this species are internal, but clearly visible through the upper cortex of the hydrated thallus. Bipartite and tripartite cyanolichens (10.3897-mycokeys.6.3869) Figure 1.jpg
Bipartite and tripartite cyanolichens. A In the bipartite cyanolichen Peltigera scabrosa the cyanobacterial symbiont (Nostoc) forms a continuous layer just below the upper cortex of the lichen thallus. B Nephroma bellum is another example of bipartite cyanolichens. C In the tripartite cyanolichen Peltigera aphthosa the Nostoc symbiont is restricted to wart-like cephalodia (shown magnified) on the upper surface of the thallus, while the green algal symbiont (Coccomyxa) forms the photobiont layer. D Nephroma arcticum is another example of tripartite cyanolichens. The large cephalodia of this species are internal, but clearly visible through the upper cortex of the hydrated thallus.

Cyanolichens are lichens that apart from the basic fungal component ("mycobiont"), contain cyanobacteria, otherwise known as blue-green algae, as the photosynthesizing component ("photobiont"). Overall, about a third of lichen photobionts are cyanobacteria and the other two thirds are green algae. [2]

Some lichens contain both green algae and cyanobacteria apart from the fungal component, in which case they are called "tripartite". Normally the photobiont occupies an extensive layer covering much of the thallus, but in tripartite lichens, the cyanobacterium component may be enclosed in pustule-like outgrowths of the main thallus called cephalodia, which can take many forms. Apart from gaining energy through photosynthesis, the cyanobacteria which live in cephalodia may perform nitrogen fixation on behalf of the lichen community. These cyanobacteria are generally more rich in nitrogen-fixing cells called heterocysts than those which live in the main photobiont layer of lichens. [2] [1]

Related Research Articles

<span class="mw-page-title-main">Lichen</span> Symbiosis of fungi with algae or cyanobacteria

A lichen is a symbiosis of algae or cyanobacteria living among filaments of multiple fungi species, along with a yeast embedded in the cortex or "skin", in a mutualistic relationship. Lichens are important actors in nutrient cycling and act as producers which many higher trophic feeders feed on, such as reindeer, gastropods, nematodes, mites, and springtails. Lichens have properties different from those of their component organisms. They come in many colors, sizes, and forms and are sometimes plant-like, but are not plants. They may have tiny, leafless branches (fruticose); flat leaf-like structures (foliose); grow crust-like, adhering tightly to a surface (substrate) like a thick coat of paint (crustose); have a powder-like appearance (leprose); or other growth forms.

<i>Xanthoria parietina</i> Species of lichen

Xanthoria parietina is a foliose lichen in the family Teloschistaceae. It has wide distribution, and many common names such as common orange lichen, yellow scale, maritime sunburst lichen and shore lichen. It can be found near the shore on rocks or walls, and also on inland rocks, walls, or tree bark. It was chosen as a model organism for genomic sequencing by the US Department of Energy Joint Genome Institute (JGI).

<i>Trebouxia</i> Genus of algae

Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.

<span class="mw-page-title-main">Soredium</span> Reproductive structures of lichens

Soredia are common reproductive structures of lichens. Lichens reproduce asexually by employing simple fragmentation and production of soredia and isidia. Soredia are powdery propagules composed of fungal hyphae wrapped around cyanobacteria or green algae. These can be either scattered diffusely across the surface of the lichen's thallus, or produced in localized structures called soralia. Fungal hyphae make up the basic body structure of lichen. The soredia are released through openings in the upper cortex of the lichen structure. After their release, the soredia disperse to establish the lichen in a new location.

<i>Lobaria pulmonaria</i> Species of lichen

Lobaria pulmonaria is a large epiphytic lichen consisting of an ascomycete fungus and a green algal partner living together in a symbiotic relationship with a cyanobacterium—a symbiosis involving members of three kingdoms of organisms. Commonly known by various names like tree lungwort, lung lichen, lung moss, lungwort lichen, oak lungs or oak lungwort, it is sensitive to air pollution and is also harmed by habitat loss and changes in forestry practices. Its population has declined across Europe and L. pulmonaria is considered endangered in many lowland areas. The species has a history of use in herbal medicines, and recent research has corroborated some medicinal properties of lichen extracts.

<i>Buellia</i> Genus of lichens

Buellia is a genus of mostly lichen-forming fungi in the family Caliciaceae. The fungi are usually part of a crustose lichen. In this case, the lichen species is given the same name as the fungus. But members may also grow as parasites on lichens (lichenicolous). The algae in the lichen is always a member of the genus Trebouxia.

<i>Nephroma</i> Genus of lichens in the family Parmeliaceae

Nephroma is a genus of medium to large foliose lichens. The genus has a widespread distribution. They are sometimes called kidney lichens, named after the characteristic kidney-shaped apothecia that they produce on the lower surface of their lobe tips, which often curl upwards and thus are visible from above. Sterile specimens that do not have apothecia can look somewhat like Melanelia, Peltigera, Platismatia, or Asahinea. Most species grow either on mossy ground or rocks, or on trees.

<span class="mw-page-title-main">Cephalodium</span> Morphological structure found in some lichens

A cephalodium (pl. cephalodia) is a small gall-like structure found in some lichens. They occur only lichens which contain both cyanobacterial and green algal partners. Cephalodia can occur within the tissues of the lichen, or on its upper or lower surface. Lichens with cephalodia can fix nitrogen, and may be an important contributor of nitrogen to the ecosystem.

<i>Pilophorus acicularis</i> Species of fungus

Pilophorus acicularis, commonly known as the nail lichen or the devil's matchstick lichen, is a species of matchstick lichen in the family Cladoniaceae.

<span class="mw-page-title-main">Fruticose lichen</span> Form of lichen

A fruticose lichen is a form of lichen fungi that is characterized by a coral-like shrubby or bushy growth structure. It is formed from a symbiotic relationship of a photobiont such as green algae or less commonly cyanobacteria and one, two or more mycobionts. Fruticose lichens are not a monophyletic and holophyletic lineage, but are a form encountered in many classes. Fruticose lichens have a complex vegetation structure, and are characterized by an ascending, bushy or pendulous appearance. As with other lichens, many fruticose lichens can endure high degrees of desiccation. They grow slowly and often occur in habitats such as on tree barks, on rock surfaces and on soils in the Arctic and mountain regions.

Dendriscocaulon is a taxonomic name that has been used for a genus of fruticose lichen with a cyanobacteria as the photobiont partner of the fungus. Dendriscocaulon is considered a taxonomic synonym of the genus Sticta, a foliose lichen, which generally has a green alga as the photobiont partner. Lichens that have been called Dendriscocaulon or Sticta involve the same fungal species. They show dramatically different morphology, may grow side-by-side, and mixed forms exist where different algae are growing within different portions of the same fungal thallus. The biochemistry of the two forms is very different, but the DNA sequences from the fungus and the photobiont can be distinguished using different primers for DNA sequencing.

<span class="mw-page-title-main">Lichen growth forms</span> Gross morphological classification

Lichens are symbiotic organisms made up of multiple species: a fungus, one or more photobionts and sometimes a yeast. They are regularly grouped by their external appearance – a characteristic known as their growth form. This form, which is based on the appearance of vegetative part of the lichen, varies depending on the species and the environmental conditions it faces. Those who study lichens (lichenologists) have described a dozen of these forms: areolate, byssoid, calicioid, cladoniform, crustose, filamentous, foliose, fruticose, gelatinous, leprose, placoidioid and squamulose. Traditionally, crustose (flat), foliose (leafy) and fruticose (shrubby) are considered to be the three main forms. In addition to these more formalised, traditional growth types, there are a handful of informal types named for their resemblance to the lichens of specific genera. These include alectorioid, catapyrenioid, cetrarioid, hypogymnioid, parmelioid and usneoid.

<span class="mw-page-title-main">Lichen morphology</span>

Lichen morphology describes the external appearance and structures of a lichen. These can vary considerably from species to species. Lichen growth forms are used to group lichens by "vegetative" thallus types, and forms of "non-vegetative" reproductive parts. Some lichen thalli have the aspect of leaves ; others cover the substrate like a crust, others such as the genus Ramalina adopt shrubby forms, and there are gelatinous lichens such as the genus Collema.

Lichen anatomy and physiology is very different from the anatomy and physiology of the fungus and/or algae and/or cyanobacteria that make up the lichen when growing apart from the lichen, either naturally, or in culture. The fungal partner is called the mycobiont. The photosynthetic partner, algae or cyanobacteria, is called the photobiont. The body of a lichens that does not contain reproductive parts of the fungus is called the thallus. The thallus is different from those of either the fungus or alga growing separately. The fungus surrounds the algal cells, often enclosing them within complex fungal tissues unique to lichen associations. In many species the fungus penetrates the algal cell wall, forming penetration pegs or haustoria similar to those produced by pathogenic fungi. Lichens are capable of surviving extremely low levels of water content (poikilohydric). However, the re-configuration of membranes following a period of dehydration requires several minutes at least.

<span class="mw-page-title-main">Symbiosis in lichens</span>

Symbiosis in lichens is the mutually beneficial symbiotic relationship of green algae and/or blue-green algae (cyanobacteria) living among filaments of a fungus, forming lichen.

Some types of lichen are able to fix nitrogen from the atmosphere. This process relies on the presence of cyanobacteria as a partner species within the lichen. The ability to fix nitrogen enables lichen to live in nutrient-poor environments. Lichen can also extract nitrogen from the rocks on which they grow.

Taitaia is a single-species fungal genus in the family Gomphillaceae. It was circumscribed in 2018 to contain the species Taitaia aurea, a lichenicolous (lichen-dwelling) fungus. This species is characterized by aggregated ascomata with yellow margins, and salmon-red discs that originate from a single base. It is known only from a few sites in Kenya's tropical lower-mountain forests, where it grows on thalli of the lichen Crocodia.

<span class="mw-page-title-main">Outline of lichens</span> Symbiosis of fungi with algae or cyanobacteria

The following outline provides an overview of and topical guide to lichens.

<i>Solorina crocea</i> Species of lichen

Solorina crocea, commonly known as the orange chocolate chip lichen, is a species of terricolous (ground-dwelling) and foliose (leafy) lichen in the family Peltigeraceae. The lichen, which was first formally described by Carl Linnaeus in 1753, has an arctic–alpine and circumpolar distribution and occurs in Asia, Europe, North America, and New Zealand. It generally grows on the bare ground in sandy soils, often in moist soil near snow patches or seepage areas. Although several forms and varieties of the lichen have been proposed in its history, these are not considered to have any independent taxonomic significance.

References

  1. 1 2 Rikkinen, J (2013). "Molecular studies on cyanobacterial diversity in lichen symbioses". MycoKeys (6): 3–32. doi: 10.3897/mycokeys.6.3869 . hdl: 10138/42730 . CC-BY icon.svg The explanatory text of the illustration was copied from this source, which is available under a Creative Commons Attribution 3.0 (CC BY 3.0) license.
  2. 1 2 Dobson, F.S. (2018). LICHENS An Illustrated Guide to the British and Irish Species. The Cottage, East Burnham Park, Allerds Road, SL2 3TJ, UK: The Richmond Publishing Co. Ltd. pp. 5–8, 14–16. ISBN   978-0-9565291-0-7.{{cite book}}: CS1 maint: location (link)