Dacentrurus

Last updated

Dacentrurus
Temporal range: Late Jurassic, - Early Cretaceous 154–140  Ma
Dacentrurus NHM.jpg
Holotype specimen, London
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Ornithischia
Clade: Thyreophora
Clade: Stegosauria
Family: Stegosauridae
Subfamily: Dacentrurinae
Genus: Dacentrurus
Lucas, 1902
Species:
D. armatus
Binomial name
Dacentrurus armatus
(Owen, 1875 [originally Omosaurus])
Synonyms

Dacentrurus (meaning "tail full of points"), originally known as Omosaurus, is a genus of stegosaurian dinosaur from the Late Jurassic to Early Cretaceous (154 - 140 mya) of Europe. Its type species, Omosaurus armatus, was named in 1875, based on a skeleton found in a clay pit in the Kimmeridge Clay in Swindon, England. In 1902 the genus was renamed Dacentrurus because the name Omosaurus had already been used for a crocodylian. After 1875, half a dozen other species would be named but perhaps only Dacentrurus armatus is valid. Finds of this animal have been limited and much of its appearance is uncertain. It was a heavily built quadrupedal herbivore, adorned with plates and spikes, reaching 8–9 metres (26–30 ft) in length and 5 metric tons (5.5 short tons) in body mass.

Contents

Discovery and species

Holotype of Dacentrurus armatus, from Owen's 1875 monograph Dacentrurus holotype.jpg
Holotype of Dacentrurus armatus, from Owen's 1875 monograph

On 23 May 1874, James Shopland of the Swindon Brick and Tyle Company reported in a letter to Professor Richard Owen that their clay pit, the Swindon Great Quarry below Old Swindon Hill at Swindon in Wiltshire, had again produced a fossil skeleton that he was willing to donate to the British Museum of Natural History. Owen sent out William Davies to secure the specimen, which proved to be encased in an eight feet high and six feet wide clay nodule. Owen presumed that the extremely hard nodule had been formed by vapours emitted by the decomposing carcass. During an attempt to lift it in its entirety, the loam clump crumbled into several pieces. These were eventually transported to London in crates with a total weight of three tonnes. The bones were subsequently partially uncovered by Owen's preparator, the mason Caleb Barlow. [1]

Owen named and described the remains in 1875 as the type species Omosaurus armatus. The generic name is derived from Greek ὦμος, omos, "upper arm", in reference to the robust humerus. The specific name armatus can mean "armed" in Latin and in this case refers to a large spike that Owen assumed was present on the upper arm. The study was illustrated by high quality lithographs. [2]

The holotype, NHMUK 46013, was found in a layer of the Kimmeridge Clay Formation dating from the late Kimmeridgian. The pits were soon abandoned; as a result it is no longer possible to determine their exact location and age. The holotype consists of a postcranial skeleton lacking the skull. The main nodule fragment contains the pelvis; a series of six posterior dorsal vertebrae, all sacrals and eight anterior caudal vertebrae; a right femur and some loose vertebrae. In all, thirteen detached vertebrae are present in the material. Also an almost complete left forelimb was contained by another loam clump. Additional elements include a partial right fibula with calcaneum, a partial tibia, a right neck plate and a left tail spike.

A smaller nodule contained a left forelimb, the humerus, radius and ulna Dacentrurus armatus.jpg
A smaller nodule contained a left forelimb, the humerus, radius and ulna

Several other species would be named within the genus Omosaurus. Part of the British Museum of Natural History collection was specimen NHMUK 46320, a pair of spike bases found in the Kimmeridge Clay by William Cunnington near the Great Western Railway cutting near Wootton Bassett. These Owen in 1877 named Omosaurus hastiger, the epithet meaning "spike-bearer" or "lance-wielder", the spikes by him seen as placed on the wrist of the animal. [3]

Holotype spikes of O. hastiger, the second species named Omosaurus hastiger.jpg
Holotype spikes of O. hastiger, the second species named

In 1887, John Whitaker Hulke named Omosaurus durobrivensis based on specimen NHMUK R1989 found at Tanholt, close to Eye, Cambridgeshire, the specific name being derived from Durobrivae. [4] (That specimen is sometimes mistakenly said to have been found at Fletton, Peterborough, Cambridgeshire, which is where Alfred Nicholson Leeds made most of his finds.) This in 1956 became the separate genus Lexovisaurus .

In 1893, Harry Govier Seeley named Omosaurus phillipsii , based on a left femur of a young individual found at Slingsby, North Yorkshire, specimen YM 498, the epithet honouring the late John Phillips. [5] Seeley suggested this may be the same taxon as Priodontognathus phillipsii Seeley 1869, which has led to the misunderstanding, due to its having the same specific name, that Priodontognathus was simply subsumed by him under Omosaurus. This interpretation however, is incorrect as both species have different holotypes. O. phillipsii has been considered a nomen dubium . [6] "Omosaurus leedsi" is a nomen nudum used by Seeley on a label for CAMSM J.46874, a plate found in Cambridgeshire, the epithet honouring Alfred Nicholson Leeds. [7]

In 1910, Friedrich von Huene named Omosaurus vetustus , based on specimen OUM J.14000, a femur found in the west bank of Cherwell River, the epithet meaning "the ancient one". [8] In 1911, Franz Nopcsa named Omosaurus lennieri, the epithet honouring Gustave Lennier, based on a partial skeleton in 1899 found in the Kimmeridgian Argiles d'Octeville near Cap de la Hève  [ fr ] in Normandy, France. [9] The specimen would be destroyed during an allied bombing of Le Havre in 1944. The species was by Peter Galton considered a junior synonym of Omosaurus armatus in 1991.

Even as the last two Omosaurus species were named, it had become known that the name Omosaurus had been preoccupied by a "crocodilian" (in fact a phytosaur), Omosaurus perplexus Leidy 1856. [10] This had been pointed out by Othniel Charles Marsh during a visit to Great Britain. [11] In 1900, Richard Lydekker tried to solve this by subsuming the first species under Stegosaurus, as a Stegosaurus armatus and a Stegosaurus hastiger. [12] It had escaped him that Marsh had already named a Stegosaurus armatus in 1877.

In 1902, Frederick Augustus Lucas renamed the genus into Dacentrurus. The name is derived from Greek δα~, da~, "very" or "full of", κέντρον, kentron, "point", and οὐρά, oura, "tail". [13] Lucas only gave a new combination name for the type species Omosaurus armatus: Dacentrurus armatus, but in 1915 Edwin Hennig moved most Omosaurus species to Dacentrurus, resulting in a Dacentrurus hastiger, Dacentrurus durobrivensis, Dacentrurus phillipsi and a Dacentrurus lennieri. [14] Nevertheless, it would be common for researchers to use the name Omosaurus instead until the middle of the twentieth century. [15] D. vetustus, earlier indicated as Omosaurus (Dacentrurus) vetustus by von Huene, was included with Lexovisaurus as a Lexovisaurus vetustus in 1983, [16] but that assignment was rejected with both editions of the Dinosauria, [17] [18] and O. vetustus is now the type species of "Eoplophysis". [19]

In 2021, remains attributed to Dacentrurus sensu lato were reported from the earliest Cretaceous (Berriasian) Angeac-Charente bonebed of France, these consisted of a partial skeleton including parts of the braincase, vertebrae, ribs and phalanges. [20]

Distribution

Dorsal vertebra of D. armatus Dacentrurus dorsal vertebra.jpg
Dorsal vertebra of D. armatus
Plate from Spain Dacentrurus - Riodeva, Teruel, Spain - Dinopolis 002.JPG
Plate from Spain

Due to the fact it represented the best known stegosaurian species from Europe, the first known from articulated remains, most stegosaur discoveries in this area were referred to Dacentrurus. [21] This included finds in Wiltshire and Dorset in southern England (among them a vertebra ascribed to D. armatus in Weymouth [22] ), fossils from France and Spain and five more historically recent skeletons from Portugal. Most of these finds were fragmentary in nature; the only more complete skeletons were the holotypes of D. armatus and D. lennieri. Eventually the strata from which Dacentrurus was reported amounted to the following list:

A longitudinally sectioned egg, with a length of 125 millimetres, from Portugal has been attributed to Dacentrurus, the first associated with any stegosaur. [24]

Remains in 1957 named as a sauropod, Astrodon pusillus, [25] were in 1981 by Galton identified as a Dacentrurus juvenile. [26]

Peter Malcolm Galton in the eighties referred all stegosaur remains from Late Jurassic deposits in western Europe to D. armatus. [22] A radically different approach was in 2008 taken by Susannah Maidment who limited the material of D. armatus to its holotype. Most named species, among them Astrodon pusillus from Portugal based on stegosaur fossils, she considered nomina dubia . She considered the specimens from mainland Europe possibly a separate species, but as it was too limited to establish distinctive traits she assigned it to Dacentrurus sp. [27]

In 2013, Alberto Cobos and Francisco Gascó described stegosaurian vertebral remains, which were found grouped together in the "Barranco Conejero" locality of the Villar del Arzobispo Formation in Riodeva (Teruel, Spain). The remains were assigned to Dacentrurus armatus and consist of four vertebral centra, specimens MAP-4488-4491, from a single individual, two of which are cervical vertebrae, the third is dorsal, and the last is caudal. This discovery was considered significant because it would demonstrate both the intra-specific variability of Dacentrurus armatus, and the strong prevalence of Dacentrurus in the Iberian range during the Jurassic-Cretaceous boundary, approximately 145 million years ago. [21] However, new paratype material of Miragaia described in 2019 shows stronger affinities to the Villar del Arzobispo material than the holotype material of Dacentrurus. [28]

Description

Life restoration Dacentrurus armatus.png
Life restoration

Dacentrurus was one of the largest species of stegosaur along with Stegosaurus , with some specimens have been estimated to reach 8–9 metres (26–30 ft) in length, 1.8 metres (5.9 ft) in hip height and 5 metric tons (5.5 short tons) in body mass. [29] [30] For a stegosaur, the gut was especially broad, [30] and a massive rump is also indicated by exceptionally wide dorsal vertebrae centra. [17] The hindlimb was rather short, [30] but the forelimb relatively long, largely because of a long upper arm. [17]

In 1991, Galton provided a possible diagnosis. The neck consists of twelve vertebrae. The rear third of the neck vertebrae and the entire dorsal series are massively built in that the maximal transverse width of their centra exceeds the maximum anterior-posterior length. In the rear two-thirds of the dorsal series, the pedicels of the neural arches are solid and short with the transverse processes having a minimal angle of 55 degrees with the neural spine. The sacrum consists of seven fused vertebrae preceded by two dorsosacrals. The front tail vertebrae are also massively built with short neural spines ending in massive rounded tops. In the pelvis, the anterior blade of the ilium is short and widening to the front. The ischium tapers to below and is straight in side view. The radius had 69% of the length of the humerus; the ulna 79%. The humerus has 68% of the length of the thighbone and the ilium 85%. At least some plates of the back armour are small with a thick base. At least two pair of stocky spines are present with an expanded base and four pairs of long spines with a small base on the tail. [24]

Skeleton

The centra of the neck vertebrae are exceptionally robust, more so than with any other stegosaur known in 1985. Also the centra of the back are massively built. That they are transversely wider than horizontally long, is the opposite of the normal situation with the Stegosauria. The upper side of the dorsal centrum shows a distinctive depression, an exaggeration of the small dent usually present in this position. In all the dorsals, the angle between the transverse processes and the neural spine is at least 55 degrees. With Stegosaurus and Kentrosaurus, the same is true for the front vertebrae, but in those genera the posterior dorsals have processes pointing much more vertically, up to 35 degrees. Comparable inclinations are usual for other stegosaurs. As their pedicels are short, the articulation processes are placed low on the neural arches. According to Galton, the sacrum is not particularly vertically depressed. The centra of the frontmost tail vertebrae are relatively large. As a result, the neural arches are just 40% taller, whereas with other stegosaurs, the relative height can be two or three times the relative centre height. In the first caudal, the transverse processes are vertically deep and oriented horizontally with a conspicuous point on the front upper edge. In this they resemble those of Stegosaurus and Lexovisaurus. [22]

The forelimb of Dacentrurus contains a massive humerus, its shaft protruding in an enormous deltopectoral crest, the attachment for a powerful musculature. This trait is shared with the majority of derived stegosaurs, however. An exceptional trait is that the thighbone is only 47% longer than the humerus. The ulna has 79% of the length of the humerus, a basal value comparable to that of Kentrosaurus but much lower than with Stegosaurus. The ventral surface of the metacarpals is smooth, lacking the raised rugosities of adult Stegosaurus. [22]

The holotype has a pelvis of considerable dimensions. The right ilium has a maximal length of 1048 millimetres. Measured over the front blades of both ilia, the pelvis is 1493 millimetres wide. According to Galton to the front blade, the Musculus iliotibialis 1 was attached, a muscle lifting the lower leg. The pubic bone has a deep processus praepubicus at the front and the foramen obturatum was closed at the rear. [22]

In the hindlimb, the holotype shows a fourth trochanter present just above the middle of the thighbone shaft; in Stegosaurus even the largest individuals lack this trait. In the holotype, the distal end of the tibia has an exceptionally large transverse width of 284 millimetres. [22]

Armour

Alternative life restoration portrayed with shoulder spike Dacentrurus UDL.png
Alternative life restoration portrayed with shoulder spike

Although Dacentrurus is considered to have the same general proportions as Stegosaurus , its plate and spike configuration is known to be rather different, as it probably had both two rows of small plates on its neck and two rows of longer spikes along its tail. [31]

The holotype specimen of Dacentrurus armatus contained a small blunt asymmetrical neck or front back plate. Its base length is fifteen centimetres and the transverse width is seven centimetres. The base is oblique and the longest plate surface seems to be on the outside. Seen from that side it is pointing obliquely to the rear. The outer surfaces are smooth but the ventral surface is porous with irregular depressions. [22]

The holotype also included a left tail spike which could have been part of a thagomizer. It is generally shaped as the rear spikes of some Stegosaurus species. However, a difference is that Stegosaurus spikes are transversely flattened whereas the Dacentrurus spike is transversely wide with gently convex surfaces lacking clear cutting edges. This spike has a preserved maximum length of 456 millimetres. Its maximal base width is 118 millimetres. The base is only slightly expanded but its ventral surface is strongly sculptured. [22]

The two spines that are the holotype of Omosaurus hastiger have very massive bases. According to Galton, they are from a more anterior position than the spike preserved with BMNH 46013 and form a left-right pair. He considered the morphology variation to be comparable to that of Kentrosaurus. The spine on the right is more complete with a transverse base width of 205 millimetres and an estimated base length of twenty-two centimeters. Owen reconstructed the original length at seventy centimetres. Its ventral surface has a complex morphology. From the front to the rear it shows a convex curvature. The surface is divided into two zones by a longitudinal ridge. The outer zone covers two thirds of the surface, the inner zone a third. Both zones are strongly concave transversely. The better preserved left spine shows that the inner edge has many small notches. There is a lange central cavity connected to small holes in the ventral surface by channels. [22]

Dacentrurus has sometimes been portrayed with a spike growing near the shoulder, similar to Kentrosaurus . Whether this portrayal is accurate or not is not yet determined. According to Galton, such shoulder spikes are not homologous to those of nodosaurids. The stocky spines found with Dacentrurus he thought were placed on the tail base. [24]

Phylogeny

Restored skeleton Dacentrurus armatus skeleton.png
Restored skeleton
Caudal vertebra and fourth left metacarpal of D. armatus D. armatus.jpg
Caudal vertebra and fourth left metacarpal of D. armatus
Ischium and pubis of D. armatus Dacentrurus pelvis.jpg
Ischium and pubis of D. armatus
Spike and tibia of D. armatus Omosaurus armatus.jpg
Spike and tibia of D. armatus

Dacentrurus was the first stegosaur of which good remains had ever been discovered; earlier finds as Paranthodon , Regnosaurus and Craterosaurus were too limited to be directly recognisable as representing a distinctive new group. Owen therefore was unable to closely relate his Omosaurus to other species but was aware it represented a member of the Dinosauria. In 1888 Richard Lydekker named a family Omosauridae, but this name fell into disuse once it was realised that Omosaurus was preoccupied. In the twentieth century Dacentrurus was usually assigned to the Stegosauridae.

In 1957, Robert Hoffstetter thought that Dacentrurus was more derived than Lexovisaurus. [32] In 1969, Ronald Steel agreed, even though Dacentrurus showed basal traits as an apparent lack of dermal plates and a long forelimb. [33] In 1981, Galton considered the low angle of the transverse processes, close to that of most other ornithischians, as a plesiomorphy. The same would be true of the low columnar pedicel of the neural arches. Therefore, despite dermal plates in fact being present, he concluded that Dacentrurus was an early off-shoot of the stegosaurian tree. [22]

Earlier often considered to have been a rather basal stegosaurid, Dacentrurus was by more extensive cladistic analyses shown to be relatively derived. In 2001, Kenneth Carpenter e.a. found it as the sister species of Hesperosaurus . [34] In 2008 and 2010 studies determined it as forming the clade Dacentrurinae with its sister species Miragaia longicollum . The Dacentrurinae were the sister group of Stegosaurus (Stegosaurinae sensu Sereno). [35] The following cladogram shows the position of Dacentrurus armatus within the Thyreophora according to Maidment (2010): [15]

Thyreophora

Emausaurus

Scelidosaurus

Eurypoda
Stegosauria

Huayangosaurus

Chungkingosaurus

Stegosauridae

Kentrosaurus

Dacentrurinae

Dacentrurus armatus

Miragaia

Stegosaurus

Loricatosaurus

Tuojiangosaurus

Paranthodon

Gigantspinosaurus

 

Ankylosauria

See also

Related Research Articles

<i>Stegosaurus</i> Thyreophoran stegosaurid dinosaur genus from Late Jurassic period

Stegosaurus is a genus of herbivorous, four-legged, armored dinosaur from the Late Jurassic, characterized by the distinctive kite-shaped upright plates along their backs and spikes on their tails. Fossils of the genus have been found in the western United States and in Portugal, where they are found in Kimmeridgian- to Tithonian-aged strata, dating to between 155 and 145 million years ago. Of the species that have been classified in the upper Morrison Formation of the western US, only three are universally recognized: S. stenops, S. ungulatus and S. sulcatus. The remains of over 80 individual animals of this genus have been found. Stegosaurus would have lived alongside dinosaurs such as Apatosaurus, Diplodocus, Camarasaurus and Allosaurus, the latter of which may have preyed on it.

<i>Kentrosaurus</i> Extinct genus of dinosaurs from late Jurassic in Lindi Region, Tanzania

Kentrosaurus is a genus of stegosaurid dinosaur from the Late Jurassic in Lindi Region of Tanzania. The type species is K. aethiopicus, named and described by German palaeontologist Edwin Hennig in 1915. Often thought to be a "primitive" member of the Stegosauria, several recent cladistic analyses find it as more derived than many other stegosaurs, and a close relative of Stegosaurus from the North American Morrison Formation within the Stegosauridae.

<i>Hesperosaurus</i> Extinct genus of dinosaurs

Hesperosaurus is a herbivorous stegosaurian dinosaur from the Kimmeridgian age of the Jurassic period, approximately 156 million years ago.

<i>Chialingosaurus</i> Extinct genus of dinosaurs

Chialingosaurus is a genus of herbivorous stegosaurian dinosaur similar to Kentrosaurus from the Upper Shaximiao Formation, Late Jurassic beds in Sichuan Province in China. Its age makes it one of the oldest species of stegosaurs, living about 160 million years ago. Since it was an herbivore, scientists think that Chialingosaurus probably ate ferns and cycads, which were plentiful during the period when Chialingosaurus was alive.

<i>Wuerhosaurus</i> Extinct genus of dinosaurs

Wuerhosaurus is a genus of stegosaurid dinosaur from the Early Cretaceous Period of China and Mongolia. As such, it was one of the last genera of stegosaurians known to have existed.

<i>Huayangosaurus</i> Extinct genus of dinosaurs

Huayangosaurus is a genus of stegosaurian dinosaur from the Middle Jurassic of China. The name derives from "Huayang" (華陽), an alternate name for Sichuan, and "saurus", meaning "lizard". It lived during the Bathonian to Callovian stages, around 165 million years ago, some 20 million years before its famous relative, Stegosaurus appeared in North America. At only approximately 4 metres (13 ft) long, it was also much smaller than its famous cousin. Found in the Lower Shaximiao Formation, Huayangosaurus shared the local Middle Jurassic landscape with the sauropods Shunosaurus, Datousaurus, Omeisaurus and Protognathosaurus, the ornithopod Xiaosaurus and the carnivorous Gasosaurus.

<i>Lexovisaurus</i> Extinct genus of reptiles

Lexovisaurus is a genus of stegosaur from mid-to-Late Jurassic Europe, 165.7-164.7 mya. Fossils of limb bones and armor fragments have been found in middle to late Jurassic-aged strata of England and France.

<i>Tuojiangosaurus</i> Extinct genus of dinosaurs

Tuojiangosaurus is a genus of herbivorous stegosaurian dinosaur from the Late Jurassic Period, recovered from the Upper Shaximiao Formation of what is now Sichuan Province in China.

<i>Paranthodon</i> Stegosaurian dinosaur genus from Early Cretaceous South Africa

Paranthodon is a genus of stegosaurian dinosaur that lived in what is now South Africa during the Early Cretaceous, between 139 and 131 million years ago. Discovered in 1845, it was one of the first stegosaurians found. Its only remains, a partial skull, isolated teeth, and fragments of vertebrae, were found in the Kirkwood Formation. British paleontologist Richard Owen initially identified the fragments as those of the pareiasaur Anthodon. After remaining untouched for years in the British Museum of Natural History, the partial skull was identified by South African paleontologist Robert Broom as belonging to a different genus; he named the specimen Palaeoscincus africanus. Several years later, Hungarian paleontologist Franz Nopcsa, unaware of Broom's new name, similarly concluded that it represented a new taxon, and named it Paranthodon owenii. Since Nopcsa's species name was assigned after Broom's, and Broom did not assign a new genus, both names are now synonyms of the current binomial, Paranthodon africanus. The genus name combines the Ancient Greek para (near) with the genus name Anthodon, to represent the initial referral of the remains.

<span class="mw-page-title-main">Stegosauria</span> Extinct clade of dinosaurs

Stegosauria is a group of herbivorous ornithischian dinosaurs that lived during the Jurassic and early Cretaceous periods. Stegosaurian fossils have been found mostly in the Northern Hemisphere, predominantly in what is now North America, Europe, Africa, South America and Asia. Their geographical origins are unclear; the earliest unequivocal stegosaurian, Bashanosaurus primitivus, was found in the Bathonian Shaximiao Formation of China.

<span class="mw-page-title-main">Stegosauridae</span> Extinct family of dinosaurs

Stegosauridae is a family of thyreophoran dinosaurs within the suborder Stegosauria. The clade is defined as all species of dinosaurs more closely related to Stegosaurus than Huayangosaurus. The name ‘Stegosauridae’ is thus a stem-based name taken from the well-represented genus – Stegosaurus. Fossil evidence of stegosaurids, dating from the Middle Jurassic through the Early Cretaceous, have been recovered from North America, Eurasia and Africa.

<i>Chungkingosaurus</i> Extinct genus of dinosaurs

Chungkingosaurus, meaning "Chongqing Lizard", is a genus of herbivorous dinosaur from the Late Jurassic Upper Shaximiao Formation in what is now China. It is a member of the Stegosauria.

<i>Yingshanosaurus</i> Extinct genus of dinosaurs

Yingshanosaurus is a genus of stegosaurian dinosaur from the Late Jurassic, around 155 million years ago. It was a herbivore that lived in what is now China. The type species is Yingshanosaurus jichuanensis.

<i>Hypsirhophus</i> Genus of dinosaurs

Hypsirhophus is a genus of stegosaurian dinosaurs. It contains a single species, Hypsirhophus discurus, which is known only from a fragmentary specimen. The fossil consists of partial vertebrae from the back, three from the tail, and a piece of rib.

<i>Loricatosaurus</i> Extinct genus of dinosaurs

Loricatosaurus is a Stegosaurid genus from Callovian-age rocks of England and France.

<i>Miragaia longicollum</i> Extinct species of dinosaur

Miragaia is a long-necked stegosaurid dinosaur. Its fossils have been found in Upper Jurassic rocks in Portugal and possibly also Wyoming, United States. Miragaia has the longest neck known for any stegosaurian, which included at least seventeen vertebrae.

<i>Alcovasaurus</i> Extinct genus of dinosaurs

Alcovasaurus, alternatively known as Miragaia longispinus, is a genus of herbivorous stegosaurian dinosaur that lived in the Late Jurassic. It was found in the Morrison Formation of Natrona County, Wyoming, United States. The type species is Stegosaurus longispinus, later given the genus Alcovasaurus, and in 2019 recombined as Miragaia longispinus.

<span class="mw-page-title-main">Timeline of stegosaur research</span>

This timeline of stegosaur research is a chronological listing of events in the history of paleontology focused on the stegosaurs, the iconic plate-backed, spike-tailed herbivorous eurypod dinosaurs that predominated during the Jurassic period. The first scientifically documented stegosaur remains were recovered from Early Cretaceous strata in England during the mid-19th century. However, they would not be recognized as a distinct group of dinosaurs until Othniel Charles Marsh described the new genus and species Stegosaurus armatus in 1877, which he regarded as the founding member of the Stegosauria. This new taxon originally included all armored dinosaurs. It was not until 1927 that Alfred Sherwood Romer implemented the modern use of the name Stegosauria as specifically pertaining to the plate-backed and spike-tailed dinosaurs.

<i>Adratiklit</i> Extinct genus of dinosaurs

Adratiklit is an extinct genus of herbivorous stegosaurian dinosaur that lived on the supercontinent Gondwana during the Middle Jurassic period. The genus contains a single species, Adratiklit boulahfa. Its remains were found in the El Mers Group, probably in the El Mers II Formation (Bathonian), near Boulahfa, south of Boulemane, Fès-Meknes, north Morocco.

<i>Bashanosaurus</i> Extinct genus of stegosaurian dinosaurs

Bashanosaurus is an extinct genus of stegosaurian dinosaur from the Middle Jurassic Shaximiao Formation of Yunyang County, China. The genus contains a single species, Bashanosaurus primitivus, known from incomplete skeletons belonging to three individuals. It is one of the basalmost stegosaurs, as well as one of the oldest known stegosaurs, along with Adratiklit and Isaberrysaura.

References

  1. Davis, W., 1876, "On the exhumation and development of a large reptile (Omosaurus armatus, Owen), from the Kimmeridge Clay, Swindon, Wilts.", Geological Magazine, 3: 193–197
  2. R. Owen, 1875, Monographs on the fossil Reptilia of the Mesozoic formations. Part II. (Genera Bothriospondylus, Cetiosaurus, Omosaurus). The Palaeontographical Society, London 1875: 15-93
  3. R. Owen, 1877, Monographs on the fossil Reptilia of the Mesozoic formations. Part III. (Omosaurus). The Palaeontographical Society, London 1877 :95-97
  4. J. W. Hulke, 1887, "Note on some dinosaurian remains in the collection of A. Leeds, Esq, of Eyebury, Northamptonshire", Quarterly Journal of the Geological Society43: 695-702
  5. Seeley, H. G., 1893, "Omosaurus phillipsi", Yorkshire Philosophical Society, Annual Report 1892, p. 52-57
  6. Galton, P.M. 1983. "A juvenile stegosaurian dinosaur, Omosaurus phillipsi SEELEY from the Oxfordian (Upper Jurassic) of England". Géobios16: 95-101
  7. Seeley, H. G., 1901, (in Huene, F.): Centralblatt für Minerologie, Geologie und Paläontologie 1901, p. 718
  8. Huene, F. von, 1910, "Über den altesten Rest von Omosaurus (Dacenturus) im englischen Dogger", Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1910(1): 75-78
  9. Nopcsa, F., 1911, "Omosaurus lennieri, un nouveau Dinosaurien du Cap de la Hève", Bulletin de la Société Geologique de Normandie30: 23-42
  10. J. Leidy, 1856, "Notice of remains of extinct vertebrated animals discovered by Professor E. Emmons", Proceedings of the Academy of Natural Sciences of Philadelphia8: 255-257
  11. Lydekker, Richard, 1888, "British Museum catalogue of fossil reptiles, and papers on the enaliosaurians'. Geological Magazine (3)5: 451-453
  12. Richard Lydekker, 1890, Catalogue of the fossil Reptilia and Amphibia in the British Museum. Part IV. - 295 pp., 66 Figs.; London (British Museum of Natural History)
  13. F.A. Lucas, 1902, "Paleontological notes. The generic name Omosaurus: A new generic name for Stegosaurus marshi", Science, new series16(402): 435
  14. Hennig, E., 1915, Stegosauria: Fossilium Catalogus I, Animalia pars 9, p. 1-16
  15. 1 2 Maidment, S. C. R., 2010, "Stegosauria: a historical review of the body fossil record and phylogenetic relationships", Swiss Journal of Geosciences103(2): 199-210
  16. Galton, P. M. and Powell, H. P., 1983, "Stegosaurian dinosaurs from the Bathonian (Middle Jurassic) of England, the earliest record of the family Stegosauridae", Geobios, 16: 219–229
  17. 1 2 3 Galton, Peter M.; Upchurch, Paul, 2004, "Stegosauria" In: Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd edition, Berkeley: University of California Press. Pp. 344-345
  18. P. M. Galton. 1990. Stegosauria. The Dinosauria, D. B. Weishampel, P. Dodson, and H. Osmólska (editors), University of California Press, Berkeley 435-455
  19. Ulansky, R. E., 2014. Evolution of the stegosaurs (Dinosauria; Ornithischia). Dinologia, 35 pp. [in Russian]. [DOWNLOAD PDF] http://dinoweb.narod.ru/Ulansky_2014_Stegosaurs_evolution.pdf.
  20. Ronan Allain, Romain Vullo, Lee Rozada, Jérémy Anquetin, Renaud Bourgeais, et al.. Vertebrate paleobiodiversity of the Early Cretaceous (Berriasian) Angeac-Charente Lagerstätte (southwestern France): implications for continental faunal turnover at the J/K boundary. Geodiversitas, Museum National d’Histoire Naturelle Paris, In press. ffhal-03264773f
  21. 1 2 3 Alberto Cobos and Francisco Gascó. (2013) New vertebral remains of the stegosaurian dinosaur Dacentrurus from Riodeva (Teruel, Spain). Geogaceta, 53, 17-20.
  22. 1 2 3 4 5 6 7 8 9 10 Galton P.M. (1985) "British plated dinosaurs (Ornithischia, Stegosauridae), Journal of Vertebrate Paleontology, 5: 211-254
  23. 1 2 3 4 Galton, Peter M.; Upchurch, Paul (2004). "Stegosauria (Table 16.1)." In: Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd, Berkeley: University of California Press. Pp. 344-345. ISBN   0-520-24209-2.
  24. 1 2 3 Galton, P.M., 1991, "Postcranial remains of the stegosaurian dinosaur Dacentrurus from the Upper Jurassic of France and Portugal", Geologica et Paleontologica, 25: 299–327
  25. Lapparent, Albert F. de & Zbyszewski, Georges, 1957, "Les dinosauriens du Portugal". Memoires de Service géologique de Portugal (N.S.)2: 1-63
  26. Galton, P.M. 1981. "A juvenile stegosaurian dinosaur, >>Astrodon pusillus<<, from the Upper Jurassic of Portugal, with comments on Upper Jurassic and Lower Cretaceous biogeography". Journal of Vertebrate Paleontology1(3/4):245-256
  27. Maidment, S.C.R., Norman, D.B., Barrett, P.M., & Upchurch, P., 2008, "Systematics and phylogeny of Stegosauria (Dinosauria: Ornithischia)", Journal of Systematic Palaeontology, 6: 367–407
  28. Costa, Francisco; Mateus, Octávio (2019-11-13). Joger, Ulrich (ed.). "Dacentrurine stegosaurs (Dinosauria): A new specimen of Miragaia longicollum from the Late Jurassic of Portugal resolves taxonomical validity and shows the occurrence of the clade in North America". PLOS ONE. 14 (11): e0224263. Bibcode:2019PLoSO..1424263C. doi: 10.1371/journal.pone.0224263 . ISSN   1932-6203. PMC   6853308 . PMID   31721771.
  29. Cobos, A.; Royo-Torres, R.; Luque, L.; Alcalá, L.; Mampel, L. (2010). "An Iberian stegosaurs paradise: The Villar del Arzobispo Formation (Tithonian–Berriasian) in Teruel (Spain)". Palaeogeography, Palaeoclimatology, Palaeoecology. 293 (1–2): 223–226. doi:10.1016/j.palaeo.2010.05.024.
  30. 1 2 3 Paul, G.S., 2010, The Princeton Field Guide to Dinosaurs, Princeton University Press p. 223
  31. Lessem, Don (2003). Scholastic Dinosaurs A-Z. Scholastic Inc. p. 67. ISBN   978-0-439-16591-4.
  32. Hoffstetter, R. 1957. "Quelques observations sur les stégosaurinés". Bulletin Muséum National Histoire Nationelle, Paris2(29): 537-547
  33. Steel, R. 1969. Ornithischia. Enclyclopedia of Paleoherptology. XV 84 pp, Gustav Fisher Verlag, Stuttgart
  34. Carpenter K., Miles C.A. & Cloward K. 2001. "New primitive stegosaur from the Morrison Formation, Wyoming". In: Carpenter K., editor. The Armored Dinosaurs Bloomington: Indiana University Press; pp 55–75
  35. Mateus, Octávio; Maidment, Susannah C. R.; Christiansen, Nicolai A. (2009). "A new long-necked 'sauropod-mimic' stegosaur and the evolution of the plated dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 276 (1663): 1815–1821. doi:10.1098/rspb.2008.1909. PMC   2674496 . PMID   19324778.

Further reading