Dog whelk

Last updated

Dog whelk
Nucella lapillus.jpg
A group of live Nucella lapillus on the barnacles which they eat.
Nucella lapilus 001.jpg
Nucella lapillus shells
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Mollusca
Class: Gastropoda
Subclass: Caenogastropoda
Order: Neogastropoda
Family: Muricidae
Genus: Nucella
Species:
N. lapillus
Binomial name
Nucella lapillus
Synonyms [1]

Buccinum filosaGmelin, 1791
Buccinum lapillusLinnaeus, 1758 (basionym)
Nassa ligataRöding, 1798
Nassa rudisRoding, 1798
Nucella theobromaRoding, 1798
Purpura buccinoideaBlainville, 1829
Purpura imbricataLamarck, 1822
Purpura lapillus (Linnaeus, 1758)
Purpura lapillus var. anomalaMiddendorff, 1849
Purpura lapillus var. aurantiaDautzenberg, 1887
Purpura lapillus var. bizonalisLamarck, 1822
Purpura lapillus var. caerulescens Dautzenberg, 1920
Purpura lapillus var. castaneaDautzenberg, 1887
Purpura lapillus var. celticaLocard, 1886
Purpura lapillus var. citrinaDautzenberg, 1920
Purpura lapillus var. crassissimaDautzenberg, 1887
Purpura lapillus var. fauce-violaceoDautzenberg, 1887
Purpura lapillus var. fusco-apicataDautzenberg & Fischer, 1925
Purpura lapillus var. lacteaDautzenberg, 1887
Purpura lapillus var. majorJeffreys, 1867
Purpura lapillus var. minorJeffreys, 1867
Purpura lapillus var. mixtaDautzenberg, 1920
Purpura lapillus var. monozonalisDautzenberg, 1920
Purpura lapillus var. ponderosaVerkrüzen, 1881
Purpura lineolataDautzenberg, 1887
Thais lapillusLinnaeus, 1758

Contents

The dog whelk, dogwhelk, or Atlantic dogwinkle (Nucella lapillus) is a species of predatory sea snail, a carnivorous marine gastropod in the family Muricidae, the rock snails.

Nucella lapillus was originally described by Carl Linnaeus in his landmark 1758 10th edition of Systema Naturae as Buccinum lapillus (the basionym).

"Dog whelk" can also refer to the Nassariidae.

Distribution

This species is found around the coasts of Europe and in the northern west Atlantic coast of North America. It also can be found in estuarine waters along the Atlantic coasts. This species prefers rocky shores, where it eats mussels and acorn barnacles. [2]

Shell description

Five views of a white shell of Nucella lapillus Nucella lapillus 01.JPG
Five views of a white shell of Nucella lapillus
Colour variability of shells of Nucella lapillus. Nucella Lapillus.jpg
Colour variability of shells of Nucella lapillus.

The dog whelk shell is small and rounded with a pointed spire and a short, straight siphonal canal (a groove on the underside of the shell) and a deep anal canal. The overall shell shape varies quite widely according to the degree of exposure to wave action of the shore on which a particular population lives but the body whorl (the largest section of the shell where the majority of the visceral mass is located) is usually around 3/4 of the total length of the shell. [3] The aperture is usually crenulated in mature dog whelks, less often in juveniles. [4]

The shell surface can be fairly smooth interrupted only with growth lines, or when the snail is living in more sheltered areas the shell surface can be somewhat rough and lamellose. The surface is spirally corded. The outer lip is dentate and ridged within. The columella is smooth.

The external shell colour is usually a whitish grey, but can be a wide variety of orange, yellow, brown, black, or banded with any combination of these colours. They can even, occasionally, be green, blue, or pink.

Ecology

Habitat

The dog whelk lives on rocky shores, and in estuarine conditions. Climatically it lives between the 0 °C and 20 °C isotherms.[ citation needed ]

Effects of the habitat

Wave action tends to confine the dog whelk to more sheltered shores, however, this can be counteracted, both by adaptations to tolerate it such as the shell and muscular foot, and by the avoidance of direct exposure to wave action afforded by making use of sheltered microhabitats in rocky crevices.[ citation needed ] The preferred substrate material of the dog whelk is solid rock and not sand, which adds to its problems at lower levels on the shore where weathering is likely to have reduced the stability of the seabed.[ citation needed ] Water loss by evaporation has to be tolerated (by means of the operculum which holds water in and prevents its escape as vapour), or avoided (by moving into water or a shaded area).[ citation needed ]

The peak in dog whelk population density is approximately coincidental with the mid-tidal zone. It lives in the middle shore. In general it can be said that at high vertical heights on the shoreline the dog whelk is most threatened by biotic factors such as predation from birds and interspecific competition for food, but abiotic factors are the primary concern, creating a harsh environment in which it is difficult to survive.[ citation needed ] At low vertical heights it is biotic factors, such as predation from crabs and intraspecific competition, which cause problems. The upper limit of the range in which the dog whelk is generally found is approximately coincidental with the mean high water neap tide line, and the lower limit of the range is approximately coincidental with the mean low water neap tide line, so that the vast majority of dog whelks are found on the mid-tidal zone.[ citation needed ]

Tidal pools and comparable microhabitats extend the vertical range of organisms such as the dog whelk as they provide a more constant environment, but they are prone to increased salinity because evaporation concentrates dissolved substances. This can create toxic conditions for many species.[ citation needed ]

The dog whelk can only survive out of water for a limited period, as it will gradually become desiccated and die if emersed for too long.[ citation needed ] Metabolic processes within cells take place in solution, and a decrease in water content makes it impossible for the organism to function properly. In experiments it has been shown that 50% of dog whelks die at 40 °C, and it can be assumed that at temperatures lower than this a smaller proportion will be killed off.[ citation needed ] Furthermore, the dog whelk has to excrete ammonia directly into water, as it does not have the adaptation possessed by many upper shore species which would allow it to produce uric acid for excretion without loss of water. When kept emersed for seven days at a temperature of 18 °C, 100% of dog whelks die, in contrast to many periwinkle species which can lose even more water than the dog whelk (i.e. more than 37% of their total body mass) but survive as a result of their ability to excrete toxic waste products more efficiently.[ citation needed ]

Feeding habits

Its adaptations include a modified radula (a toothed chitinous structure) to bore holes in the shells of prey, complemented by an organ on the foot which secretes a shell-softening chemical. When a hole has been formed paralysing chemicals and digestive enzymes are secreted inside the shell to break the soft body down into a 'soup' which can be sucked out with the proboscis. The plates of barnacles can be pushed apart with the proboscis, and the entire individual is eaten in about a day, although larger animals such as mussels may take up to a week to digest.

Feeding only occurs when conditions are conducive to such an activity, and during these times the dog whelk consumes large quantities of food so that the gut is always kept as full as possible. This allows shelter until more food is required, when foraging resumes. If waves are large or there is an excessive risk of water loss the dog whelk will remain inactive in sheltered locations for long periods.[ citation needed ]

Mussels have developed a defensive strategy of tethering and immobilising with byssus threads any dog whelks invading their beds, leading to the whelks' starvation. [5]

Nucella lapillus's feeding activity is suppressed on brighter moonlight nights, in order to minimize predation risks. High-intensity ALAN levels reversed the pattern. In fact, N. lapillus would more likely forage when Artficial Light At Night (ALAN) intensities range from 10 to 50 lx, which are way higher than lunar brightness. This allows dog whelks to easily exclude predation risk. [6]

Life cycle

Nucella lapillus snails and their freshly laid egg capsules. Capsules ovigeres de Nucella lapillus.JPG
Nucella lapillus snails and their freshly laid egg capsules.
Empty egg capsules of Nucella lapillus. Capsules ovigeres (chacune contenait plusieurs oeufs) du gasteropode Nucella lapillus estran Wimereux mi 2016 F Lamiot 04.jpg
Empty egg capsules of Nucella lapillus.

Predators

Predators of the dog whelk include various species of crabs and birds. Protection against predation from crabs which attempt to pull the soft body out through the shell aperture can be afforded by growing teeth around the edge of the aperture.[ citation needed ] Many predators cannot smash the strong shell of an adult dog whelk, but juveniles are vulnerable to attack from many predatory species.[ citation needed ] Eider ducks and various other birds simply swallow the entire body with its shell, while oystercatchers and various crustaceans are often capable of crushing or breaking the shells.[ citation needed ] In the winter they endure more predation from purple sandpipers and similar wading birds, but in the summer crabs represent a greater threat. In general, the dog whelk can be thought of as being vulnerable to birds when emersed, and to crabs when immersed.[ citation needed ]

Human use

The dog-whelk can be used to produce red-purple and violet dyes, [7] like its Mediterranean relations the spiny dye-murex Bolinus brandaris, the banded dye-murex Hexaplex trunculus and the rock-shell Stramonita haemastoma which provided the red-purple and violet colours that the Ancient World valued so highly. [8] Bede mentions that in Britain "whelks are abundant, and a beautiful scarlet dye is extracted from them which remains unfaded by sunshine or rain; indeed, the older the cloth, the more beautiful its colour." [9]

In Ireland, on the island of Inishkea North, Co. Mayo, archaeologists found a whelk-dyeing workshop, dated to the 7th century AD, complete with a small, presumed vat, and a pile of broken-open dog-whelk shells. [10] Unfortunately, no such workshop is known from Britain for the Early Medieval period. However, a double-checked trace of bromine, indicating the presence of whelk-dye, has been found on one page of an Anglo-Saxon book known as the Barberini Gospels. This manuscript dates to the late 8th or early 9th century AD, and the whelk dye occurs as a background panel to white lettering at the beginning of St John's gospel. Efforts have also been made to find whelk dye on surviving fragments of Anglo-Saxon textiles, but the chemical analyses so far carried out have proved negative for bromine. [11]

An Anglo-Saxon account of the accession ceremony of Aldfrith of Northumbria involved whelk-dyed cloth, although this may simply be a poetic echo of Roman ceremonies. Another example involves an account of valuable textiles brought to England by Wilfrid of Ripon. [12]

Related Research Articles

<span class="mw-page-title-main">Snail</span> Shelled gastropod

A snail is a shelled gastropod. The name is most often applied to land snails, terrestrial pulmonate gastropod molluscs. However, the common name snail is also used for most of the members of the molluscan class Gastropoda that have a coiled shell that is large enough for the animal to retract completely into. When the word "snail" is used in this most general sense, it includes not just land snails but also numerous species of sea snails and freshwater snails. Gastropods that naturally lack a shell, or have only an internal shell, are mostly called slugs, and land snails that have only a very small shell are often called semi-slugs.

<span class="mw-page-title-main">Mussel</span> Type of bivalve mollusc

Mussel is the common name used for members of several families of bivalve molluscs, from saltwater and freshwater habitats. These groups have in common a shell whose outline is elongated and asymmetrical compared with other edible clams, which are often more or less rounded or oval.

<span class="mw-page-title-main">Tyrian purple</span> Natural dye extracted from Murex sea snails

Tyrian purple, also known as royal purple, imperial purple, or imperial dye, is a reddish-purple natural dye. The name Tyrian refers to Tyre, Lebanon, once Phoenicia. It is secreted by several species of predatory sea snails in the family Muricidae, rock snails originally known by the name Murex. In ancient times, extracting this dye involved tens of thousands of snails and substantial labour, and as a result, the dye was highly valued. The colored compound is 6,6'-dibromoindigo.

<span class="mw-page-title-main">Blue mussel</span> Species of mollusc

The blue mussel, also known as the common mussel, is a medium-sized edible marine bivalve mollusc in the family Mytilidae, the only extant family in the order Mytilida, known as "true mussels". Blue mussels are subject to commercial use and intensive aquaculture. A species with a large range, empty shells are commonly found on beaches around the world.

<span class="mw-page-title-main">Tide pool</span> Rocky pool on a seashore, separated from the sea at low tide, filled with seawater

A tide pool or rock pool is a shallow pool of seawater that forms on the rocky intertidal shore. These pools typically range from a few inches to a few feet deep and a few feet across. Many of these pools exist as separate bodies of water only at low tide, as seawater gets trapped when the tide recedes. Tides are caused by the gravitational pull of the sun and moon. A tidal cycle is usually about 25 hours and consists of two high tides and two low tides.

<span class="mw-page-title-main">Whelk</span> Common name that is applied to various kinds of sea snail

Whelks are any of several carnivorous sea snail species with a swirling, tapered shell. Many are eaten by humans, such as the common whelk of the North Atlantic. Most whelks belong to the family Buccinidae and are known as "true whelks." Others, such as the dog whelk, belong to several sea snail families that are not closely related.

<span class="mw-page-title-main">Intertidal zone</span> Area of coast exposed only at low tide

The intertidal zone or foreshore is the area above water level at low tide and underwater at high tide; in other words, it is the part of the littoral zone within the tidal range. This area can include several types of habitats with various species of life, such as sea stars, sea urchins, and many species of coral with regional differences in biodiversity. Sometimes it is referred to as the littoral zone or seashore, although those can be defined as a wider region.

<i>Pagurus bernhardus</i> Species of crustacean

Pagurus bernhardus is the common marine hermit crab of Europe's Atlantic coasts. It is sometimes referred to as the common hermit crab or soldier crab. Its carapace reaches 3.5 centimetres (1.4 in) long, and is found in both rocky and sandy areas, from the Arctic waters of Iceland, Svalbard and Russia as far south as southern Portugal, but its range does not extend as far as the Mediterranean Sea. It can be found in pools on the upper shore and at the mean tide level down to a depth of approximately 140 metres (460 ft), with smaller specimens generally found in rock pools around the middle shore and lower shore regions, with larger individuals at depth. P. bernhardus is an omnivorous detritivore that opportunistically scavenges for carrion, and which can also filter feed when necessary.

<span class="mw-page-title-main">Intertidal ecology</span> Study of ecosystems, where organisms live between the low and high tide lines

Intertidal ecology is the study of intertidal ecosystems, where organisms live between the low and high tide lines. At low tide, the intertidal is exposed whereas at high tide, the intertidal is underwater. Intertidal ecologists therefore study the interactions between intertidal organisms and their environment, as well as between different species of intertidal organisms within a particular intertidal community. The most important environmental and species interactions may vary based on the type of intertidal community being studied, the broadest of classifications being based on substrates—rocky shore and soft bottom communities.

Imposex is a disorder in sea snails caused by the toxic effects of certain marine pollutants. These pollutants cause female sea snails to develop male sex organs such as a penis and a vas deferens.

<i>Semibalanus balanoides</i> Species of barnacle

Semibalanus balanoides is a common and widespread boreo-arctic species of acorn barnacle. It is common on rocks and other substrates in the intertidal zone of north-western Europe and both coasts of North America.

<i>Perna perna</i> Species of bivalve

Perna perna, the brown mussel, is an economically important mussel, a bivalve mollusc belonging to the family Mytilidae. It is harvested as a food source but is also known to harbor toxins and cause damage to marine structures. It is native to the waters of Africa, Europe, and South America and was introduced in the waters of North America.

<span class="mw-page-title-main">Purple shore crab</span> Species of crab

The purple shore crab is a common crab of the family Varunidae that is indigenous to the west coast of United States, Canada, and Mexico. H. nudus was first described in 1847 by Adam White, and in 1851, James Dwight Dana formally classified the species. H. nudus is a small, amphibious crab that is similar physically and behaviorally to Pachygrapsus crassipes and Hemigrapsus oregonensis. The purple shore crab is generally a dark purple color with olive green, red, and white spots. Mating season for H. nudus begins in mid-winter and larval crabs undergo 5 zoeal stages and a juvenile stage. Adult crabs mainly feed on algae but will occasionally scavenge other animals. H. nudus prefers inter-tidal and sub-tidal zones, and it can oftentimes be found sheltering under rocks or other debris. H. nudus demonstrates complex compensatory mechanisms to counteract fluctuating salinity and water oxygen concentrations, permitting it to live in a variety of different environments.

<i>Pachygrapsus crassipes</i> Species of crab

Pachygrapsus crassipes, the striped shore crab or lined shore crab, is a small crab found on both rocky and hard-mud soft seashores of the northeastern and northwestern Pacific Ocean. In North America, this species occurs from central Oregon, south through California to near Ensenada, Baja California, Mexico. There is an isolated population with a wide range disjunction at Bamfield on Vancouver Island, Canada. The western Pacific population, including both Korea and Japan is isolated with a divergence time from the eastern Pacific population estimated between 0.8 and 1.2 Mya.

<i>Nucella canaliculata</i> Species of gastropod

Nucella canaliculata, commonly known as the channeled dog winkle or the channeled purple, is a species of sea snail, a marine gastropod mollusk in the family Muricidae, the murex snails or rock snails. The shell grows to a maximum length of about 4 cm (1.6 in). This species is distributed in the northeastern Pacific Ocean from the Aleutian Islands to California.

<i>Nucella emarginata</i> Species of gastropod

Nucella emarginata, common name the emarginate dogwinkle, is a species of medium-sized predatory sea snail, a marine gastropod mollusk in the family Muricidae, the murex snails or rock snails.

<i>Nucella lamellosa</i> Species of gastropod

Nucella lamellosa, commonly known as the frilled dogwinkle or wrinkled purple whelk, is a species of sea snail, a marine gastropod mollusk in the family Muricidae, the murex snails or rock snails. This species occurs in the eastern Pacific Ocean, its range extending in the intertidal zone from the Aleutian Islands southward to central California.

<i>Nucella ostrina</i> Species of gastropod

Nucella ostrina, the northern striped dogwinkle, is a species of sea snail, a marine gastropod mollusk in the family Muricidae, the murex snails or rock snails. Other common names for this mollusk include emarginate dogwinkle, short-spired purple dogwinkle, striped dogwinkle, ribbed dogwinkle, emarginate whelk, ribbed rock whelk, rock thais, short-spired purple snail and rock whelk.

References

  1. Nucella lapillus (Linnaeus, 1758). Retrieved through: World Register of Marine Species  on 1 June 2010.
  2. Colin Little, J. A. Kitching, 1996, The Biology of Rocky Shores, pp. 140-145. ISBN   9780198549352
  3. "Zonation of Flora and Fauna on Rocky Shore". Archived from the original on 2019-09-01. Retrieved 2009-12-11.
  4. "MarLIN - the Marine Life Information Network". Archived from the original on 2012-02-22. Retrieved 2009-12-11.
  5. Petraitis, Peter S. (1987). "Immobilization of the predatory gastropod, Nucella lapillus, by its prey, Mytilus edulis". The Biological Bulletin. 172 (3): 307–314. doi:10.2307/1541710. JSTOR   1541710.
  6. Tidau, Svenja; Whittle, Jack; Jenkins, Stuart; Davies, Thomas (2022). "Artificial light at night reverses monthly foraging pattern under simulated moonlight". Biology Letters. 18. doi:10.1098/rsbl.2022.0110.
  7. Whelks and purple dye in Anglo-Saxon England. Carole P. Biggam. Department of English Language, University of Glasgow, Scotland, UK The Archaeo+Malacology Group Newsletter. Issue Number 9, March 2006.
  8. Ziderman, I Irving (2008). "Purple Dyes Made from Shellfish in Antiquity". Review of Progress in Coloration and Related Topics. 16: 46–52. doi:10.1111/j.1478-4408.1986.tb03743.x.
  9. https://sourcebooks.fordham.edu/halsall/basis/bede-book1.asp Bede, Ecclesiastical History of the English People Book 1, Chapter 1.
  10. Henry, Françoise (1952). "A Wooden Hut on Inishkea North, Co. Mayo. (Site 3, House A)". The Journal of the Royal Society of Antiquaries of Ireland. 82 (2): 163–178. JSTOR   25510828.
  11. Porter, C.A., Chiari, G. and Cavallo, A., 2002. The analysis of eight manuscripts and fragments from the fifth/sixth century to the twelfth century, with particular reference to the use of and identification of "real purple" in manuscripts. In: Van Grieken, R. et al. (eds), Art 2002: Proceedings of the 7th International Conference on Non-Destructive Testing and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Antwerp, Belgium, 2–6 June 2002
  12. Biggam, C. P. (2006). "Knowledge of whelk dyes and pigments in Anglo-Saxon England". Anglo-Saxon England. 35: 23–55. doi:10.1017/S0263675106000032. S2CID   162937239.