Body water

Last updated

In physiology, body water is the water content of an animal body contained in its tissues, blood, bones, and elsewhere. The percentages of body water contained in various fluid compartments add up to total body water (TBW). This water makes up a significant fraction of the human body, both by weight and by volume. Ensuring the right amount of body water is part of fluid balance, an aspect of homeostasis.

Contents

Location

By weight, the average adult human is approximately 60% water, and the average child is approximately 65% water. [1] [2] There can be considerable variation in body water percentage based on a number of factors like age, health, water intake, weight, and sex. In a large study of adults of all ages and both sexes, the adult human body averaged ~65% water. However, this varied substantially by age, sex, and adiposity (amount of fat in body composition). The figure for water fraction by weight in this sample was found to be 58 ±8% water for males and 48 ±6% for females. [3] The body water constitutes as much as 75% of the body weight of a newborn infant, whereas some obese people are as little as 45% water by weight. [4] This is due to how fat tissue does not retain water as well as lean tissue. These statistical averages will vary with factors such as type of population, age of people sampled, number of people sampled, and methodology. So there is not, and cannot be, a figure that is exactly the same for all people, for this or any other physiological measure.

Most animal body water is contained in various body fluids. These include intracellular fluid; extracellular fluid; plasma; interstitial fluid; and transcellular fluid. [5] Water is also contained inside organs, in gastrointestinal, cerebrospinal, peritoneal, and ocular fluids. Adipose tissue contains about 10% of water, while muscle tissue contains about 75%. [6] [7]

In Netter's Atlas of Human Physiology (2002), body water is broken down into the following compartments: [5]

Measurement

Dilution and equilibration

An individual’s total body water can be determined using flowing-afterglow mass spectrometry (FA-MS) to measure the abundance of deuterium in breath samples. A known dose of deuterated water (heavy water, D2O) is ingested and allowed to equilibrate within the body water. Then, the FA-MS instrument measures the ratio D:H of deuterium to hydrogen in the water vapour in exhaled breath. The total body water is then accurately measured from the increase in breath deuterium content in relation to the volume of D2O ingested.

The water in individual compartments can be measured with different substances: [10]

Intracellular fluid may then be estimated by subtracting extracellular fluid from total body water.

Bioelectrical impedance analysis

Another method of determining total body water percentage (TBW%) is via bioelectrical impedance analysis (BIA). In the traditional BIA method, a person lies on a cot and spot electrodes are placed on the hands and bare feet. Electrolyte gel is applied first, and then a weak current of frequency 50kHz is introduced. This AC waveform allows the creation of a current inside the body via the very capacitive skin without causing a DC flow or burns, and limited in the ~20mA range current for safety. [11]

BIA has emerged as a promising technique because of its simplicity, low cost, high reproducibility, and noninvasiveness. BIA prediction equations can be either generalized or population-specific, allowing this method to be potentially very accurate. Selecting the appropriate equation is important to determining the quality of the results.[ citation needed ]

For clinical purposes, scientists are developing a multi-frequency BIA method that may further improve the method's ability to predict a person's hydration level. New segmental BIA equipment that uses more electrodes may lead to more precise measurements of specific parts of the body.

Calculation

In humans, total body water can be estimated based on the premorbid (or ideal) body weight and correction factor.

C is a coefficient for the expected percentage of weight made up of free water. For adult, non-elderly males, C = 0.6. For adult elderly males, malnourished males, or females, C = 0.5. For adult elderly or malnourished females, C = 0.45. A total body water deficit (TBWD) can then be approximated by the following formula:

Where [Na]t = target sodium concentration (usually 140 mEq/L), and [Na]m = measured sodium concentration.

The resultant value is the approximate volume of free water required to correct a hypernatremic state. In practice, the value rarely approximates the actual amount of free water required to correct a deficit due to insensible losses, urinary output, and differences in water distribution among patients. [12]

Total water may also be estimated by use of anthropometric equations: [13]

The equations above (the Watson equations) have been found to give reasonable estimates in most cases, as a diverse set of subject data was used. [13] Other equations have been given for specific populations, such as Americans, [14] [15] Tunisians, [16] and Cameroonians. [17] Anthropometric TBW equations do not generalize well beyond healthy adult subjects outside their measured population, and it has been recommended to use a more accurate method such as BIA for most clinical settings. [18]

Functions

Water in the animal body performs a number of functions: as a solvent for transportation of nutrients; as a medium for excretion; a means for heat control; as a lubricant for joints; and for shock absorption. [6]

Changes

The usual way of adding water to a body is by drinking. Water also enters the body with foods, especially those rich in water, such as plants, raw meat, and fish. About 10% of human adult water intake comes as a by-product of metabolism. [19]

The amount of this water that is retained in animals is affected by several factors. Water amounts vary with the age of the animal. The older the vertebrate animal, the higher its relative bone mass and the lower its body water content.

In diseased states, where body water is affected, the fluid compartment or compartments that have changed can give clues to the nature of the problem, or problems. Body water is regulated by hormones, including antidiuretic hormone, aldosterone and atrial natriuretic peptide.

Loss of water

Volume contraction is a decrease in body fluid volume, with or without a concomitant loss of osmolytes. The loss of the body water component of body fluid is specifically termed dehydration. [20]

Sodium loss approximately correlates with fluid loss from extracellular fluid, since sodium has a much higher concentration in extracellular fluid (ECF) than intracellular fluid (ICF). In contrast, K+ has a much higher concentration in ICF than ECF, and therefore its loss rather correlates with fluid loss from ICF, since K+ loss from ECF causes the K+ in ICF to diffuse out of the cells, dragging water with it by osmosis.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Blood alcohol content</span> Metric of alcohol intoxication

Blood alcohol content (BAC), also called blood alcohol concentration or blood alcohol level, is a measurement of alcohol intoxication used for legal or medical purposes.

<span class="mw-page-title-main">Body fluid</span> Liquids inside of the body, sometimes excreted or secreted

Body fluids, bodily fluids, or biofluids, sometimes body liquids, are liquids within the body of an organism. In lean healthy adult men, the total body water is about 60% (60–67%) of the total body weight; it is usually slightly lower in women (52–55%). The exact percentage of fluid relative to body weight is inversely proportional to the percentage of body fat. A lean 70 kg (150 lb) man, for example, has about 42 (42–47) liters of water in his body.

<span class="mw-page-title-main">Extracellular fluid</span> Body fluid outside the cells of a multicellular organism

In cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 50–60% of total body weight; women and the obese typically have a lower percentage than lean men. Extracellular fluid makes up about one-third of body fluid, the remaining two-thirds is intracellular fluid within cells. The main component of the extracellular fluid is the interstitial fluid that surrounds cells.

<span class="mw-page-title-main">Thirst</span> Craving for potable fluids experienced by animals

Thirst is the craving for potable fluids, resulting in the basic instinct of animals to drink. It is an essential mechanism involved in fluid balance. It arises from a lack of fluids or an increase in the concentration of certain osmolites, such as sodium. If the water volume of the body falls below a certain threshold or the osmolite concentration becomes too high, structures in the brain detect changes in blood constituents and signal thirst.

Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. It is reported in energy units per unit time ranging from watt (joule/second) to ml O2/min or joule per hour per kg body mass J/(h·kg). Proper measurement requires a strict set of criteria to be met. These criteria include being in a physically and psychologically undisturbed state and being in a thermally neutral environment while in the post-absorptive state (i.e., not actively digesting food). In bradymetabolic animals, such as fish and reptiles, the equivalent term standard metabolic rate (SMR) applies. It follows the same criteria as BMR, but requires the documentation of the temperature at which the metabolic rate was measured. This makes BMR a variant of standard metabolic rate measurement that excludes the temperature data, a practice that has led to problems in defining "standard" rates of metabolism for many mammals.

The Starling principle holds that extracellular fluid movements between blood and tissues are determined by differences in hydrostatic pressure and colloid osmotic (oncotic) pressure between plasma inside microvessels and interstitial fluid outside them. The Starling Equation, proposed many years after the death of Starling, describes that relationship in mathematical form and can be applied to many biological and non-biological semipermeable membranes. The classic Starling principle and the equation that describes it have in recent years been revised and extended.

In pharmacology, the volume of distribution is the theoretical volume that would be necessary to contain the total amount of an administered drug at the same concentration that it is observed in the blood plasma. In other words, it is the ratio of amount of drug in a body (dose) to concentration of the drug that is measured in blood, plasma, and un-bound in interstitial fluid.

In medicine, Kt/V is a number used to quantify hemodialysis and peritoneal dialysis treatment adequacy.

Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes in the various body fluids are kept within healthy ranges. The core principle of fluid balance is that the amount of water lost from the body must equal the amount of water taken in; for example, in humans, the output must equal the input. Euvolemia is the state of normal body fluid volume, including blood volume, interstitial fluid volume, and intracellular fluid volume; hypovolemia and hypervolemia are imbalances. Water is necessary for all life on Earth. Humans can survive for 4 to 6 weeks without food but only for a few days without water.

<span class="mw-page-title-main">Osmotic concentration</span> Molarity of osmotically active particles

Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution. The osmolarity of a solution is usually expressed as Osm/L, in the same way that the molarity of a solution is expressed as "M". Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of osmoles of solute particles per unit volume of solution. This value allows the measurement of the osmotic pressure of a solution and the determination of how the solvent will diffuse across a semipermeable membrane (osmosis) separating two solutions of different osmotic concentration.

The interstitium is a contiguous fluid-filled space existing between a structural barrier, such as a cell membrane or the skin, and internal structures, such as organs, including muscles and the circulatory system. The fluid in this space is called interstitial fluid, comprises water and solutes, and drains into the lymph system. The interstitial compartment is composed of connective and supporting tissues within the body – called the extracellular matrix – that are situated outside the blood and lymphatic vessels and the parenchyma of organs.

The body fat percentage (BFP) of a human or other living being is the total mass of fat divided by total body mass, multiplied by 100; body fat includes essential body fat and storage body fat. Essential body fat is necessary to maintain life and reproductive functions. The percentage of essential body fat for women is greater than that for men, due to the demands of childbearing and other hormonal functions. Storage body fat consists of fat accumulation in adipose tissue, part of which protects internal organs in the chest and abdomen. A number of methods are available for determining body fat percentage, such as measurement with calipers or through the use of bioelectrical impedance analysis.

In physical fitness, body composition refers to quantifying the different components of a human body. The selection of compartments varies by model but may include fat, bone, water, and muscle. Two people of the same gender, height, and body weight may have completely different body types as a consequence of having different body compositions. This may be explained by a person having low or high body fat, dense muscles, or big bones.

Bioelectrical impedance analysis (BIA) is a method for estimating body composition, in particular body fat and muscle mass, where a weak electric current flows through the body and the voltage is measured in order to calculate impedance of the body. Most body water is stored in muscle. Therefore, if a person is more muscular there is a high chance that the person will also have more body water, which leads to lower impedance. Since the advent of the first commercially available devices in the mid-1980s the method has become popular owing to its ease of use and portability of the equipment. It is familiar in the consumer market as a simple instrument for estimating body fat. BIA actually determines the electrical impedance, or opposition to the flow of an electric current through body tissues which can then be used to estimate total body water (TBW), which can be used to estimate fat-free body mass and, by difference with body weight, body fat.

Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). The proper balance between the acids and bases in the ECF is crucial for the normal physiology of the body—and for cellular metabolism. The pH of the intracellular fluid and the extracellular fluid need to be maintained at a constant level.

<span class="mw-page-title-main">Insect winter ecology</span> Survival strategies of insects during winter

Insect winter ecology describes the overwinter survival strategies of insects, which are in many respects more similar to those of plants than to many other animals, such as mammals and birds. Unlike those animals, which can generate their own heat internally (endothermic), insects must rely on external sources to provide their heat (ectothermic). Thus, insects persisting in winter weather must tolerate freezing or rely on other mechanisms to avoid freezing. Loss of enzymatic function and eventual freezing due to low temperatures daily threatens the livelihood of these organisms during winter. Not surprisingly, insects have evolved a number of strategies to deal with the rigors of winter temperatures in places where they would otherwise not survive.

The human body and even its individual body fluids may be conceptually divided into various fluid compartments, which, although not literally anatomic compartments, do represent a real division in terms of how portions of the body's water, solutes, and suspended elements are segregated. The two main fluid compartments are the intracellular and extracellular compartments. The intracellular compartment is the space within the organism's cells; it is separated from the extracellular compartment by cell membranes.

Volume contraction is a decrease in the volume of body fluid, including the dissolved substances that maintain osmotic balance (osmolytes). The loss of the water component of body fluid is specifically termed dehydration.

The plateau principle is a mathematical model or scientific law originally developed to explain the time course of drug action (pharmacokinetics). The principle has wide applicability in pharmacology, physiology, nutrition, biochemistry, and system dynamics. It applies whenever a drug or nutrient is infused or ingested at a relatively constant rate and when a constant fraction is eliminated during each time interval. Under these conditions, any change in the rate of infusion leads to an exponential increase or decrease until a new level is achieved. This behavior is also called an approach to steady state because rather than causing an indefinite increase or decrease, a natural balance is achieved when the rate of infusion or production is balanced by the rate of loss.

Paul Deurenberg is a Dutch retired academic, nutritional biochemist and consultant. He was a former associate professor in the Department of Human Nutrition at Wageningen University (WU), and is most known for his research expertise in the areas of energy metabolism, food consumption, and body composition studies.

References

  1. "The water in you". Howard Perlman. December 2016.
  2. Lote, Christopher J. Principles of Renal Physiology, 5th edition. Springer. p. 2.
  3. Watson, P. E.; Watson, I. D.; Batt, R. D. (January 1980). "Total body water volumes for adult males and females estimated from simple anthropometric measurements" (PDF). The American Journal of Clinical Nutrition . 33 (1): 27–39. doi:10.1093/ajcn/33.1.27. PMID   6986753.
  4. Guyton, Arthur C. (1976). Textbook of Medical Physiology (5th ed.). Philadelphia: W.B. Saunders. pp.  284, 424. ISBN   0-7216-4393-0.
  5. 1 2 John T. Hansen; Bruce M. Koeppen (2002). Netter's Atlas of Human Physiology. Teterboro, N.J: Icon Learning Systems. ISBN   1-929007-01-9.
  6. 1 2 FCS Animal Production L2. Pearson South Africa. 2007. ISBN   9781868917297.
  7. Nutrient Requirements of Nonhuman Primates. National Academies Press. 2003-02-01. ISBN   9780309172042.
  8. 1 2 3 Guyton, Arthur C. (1976). Textbook of Medical Physiology (5th ed.). Philadelphia: W.B. Saunders. pp.  275. ISBN   0-7216-4393-0.
  9. Jackson, Sheila (1985). Anatomy & Physiology for Nurses. Nurses' Aids Series (9th ed.). London: Bailliere Tindall. ISBN   0-7020-0737-4.
  10. Nosek, Thomas M. "Section 7/7ch02/7ch02p13". Essentials of Human Physiology. Archived from the original on 2016-03-24.
  11. "US Patent 4719922, Stimulator Apparatus - this website has ended". patentstorm.us. Archived from the original on 2012-10-13.
  12. Lee., Goldman; I., Schafer, Andrew; Fayette., Cecil, Russell La (2012-01-01). Goldman's Cecil medicine. Elsevier/Saunders. ISBN   9781437716047. OCLC   779501249.{{cite book}}: CS1 maint: multiple names: authors list (link)
  13. 1 2 Watson, PE; Watson, ID; Batt, RD (January 1980). "Total body water volumes for adult males and females estimated from simple anthropometric measurements". The American Journal of Clinical Nutrition. 33 (1): 27–39. doi: 10.1093/ajcn/33.1.27 . PMID   6986753.
  14. Chumlea, William Cameron; Guo, Shumei S.; Zeller, Christine M.; Reo, Nicholas V.; Baumgartner, Richard N.; Garry, Philip J.; Wang, Jack; Pierson, Richard N.; Heymsfield, Steven B.; Siervogel, Roger M. (June 2001). "Total body water reference values and prediction equations for adults". Kidney International. 59 (6): 2250–2258. doi: 10.1046/j.1523-1755.2001.00741.x . PMID   11380828.
  15. Chumlea, William C.; Schubert, Christine M.; Reo, Nicholas V.; Sun, Shumei S.; Siervogel, Roger M. (November 2005). "Total body water volume for white children and adolescents and anthropometric prediction equations: The Fels Longitudinal Study". Kidney International. 68 (5): 2317–2322. doi: 10.1111/j.1523-1755.2005.00692.x . PMID   16221235.
  16. El Kouki, Donia; El Kari, Khalid; Draoui, Jihéne; Ben Jemaa, Houda; Ben Amor, Nadia; Monyeki, Andries; Jamoussi, Henda; Aguenaou, Hassan; Aouidet, Abdallah; Mankaï, Amani (April 2023). "Development and validation of anthropometric predictive equations that estimate the total body water and fat-free mass in Tunisian adults". European Journal of Clinical Nutrition. 77 (4): 447–453. doi:10.1038/s41430-023-01262-2. PMC   9891746 . PMID   36726031.
  17. Medoua, Gabriel Nama; Essa'a, Véronique J.; Tankou, Colman T.; Ndzana, Anne Christine A.; Dimodi, Henriette T.; Ntsama, Patricia M. (October 2015). "Validity of anthropometry- and impedance-based equations for the prediction of total body water as measured by deuterium dilution in Cameroonian haemodialysis patients". Clinical Nutrition ESPEN. 10 (5): e167–e173. doi:10.1016/j.clnesp.2015.05.006. PMID   28531471.
  18. Basile, C.; Vernaglione, L.; Bellizzi, V.; Lomonte, C.; Rubino, A.; Ambrosio, N. D; Iorio, B. D. (7 March 2008). "Total body water in health and disease: Have anthropometric equations any meaning?". Nephrology Dialysis Transplantation. 23 (6): 1997–2002. doi: 10.1093/ndt/gfm909 . PMID   18208903.
  19. Yamada, Yosuke; Zhang, Xueying; Henderson, Mary E. T.; Sagayama, Hiroyuki; Pontzer, Herman; Speakman, John R. (2022). "Variation in human water turnover associated with environmental and lifestyle factors". Science. 378 (6622): 909–915. Bibcode:2022Sci...378..909I. doi:10.1126/science.abm8668. PMC   9764345 . PMID   36423296.
  20. MedicineNet > Definition of Dehydration Archived 2013-11-06 at the Wayback Machine Retrieved on July 2, 2009

Further reading