FTH1

Last updated
FTH1
Protein FTH1 PDB 1fha.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases FTH1 , FHC, FTH, FTHL6, HFE5, PIG15, PLIF, ferritin, heavy polypeptide 1, ferritin heavy chain 1
External IDs OMIM: 134770; MGI: 95588; HomoloGene: 74295; GeneCards: FTH1; OMA:FTH1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002032

NM_010239

RefSeq (protein)

NP_002023

NP_034369

Location (UCSC) Chr 11: 61.96 – 61.97 Mb Chr 19: 9.96 – 9.96 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ferritin heavy chain is a ferroxidase enzyme that in humans is encoded by the FTH1 gene. [5] [6] FTH1 gene is located on chromosome 11, and its mutation causes Hemochromatosis type 5. [7]

Function

This gene encodes the heavy subunit of ferritin, the major intracellular iron storage protein in prokaryotes and eukaryotes. It is composed of 24 subunits of the heavy and light ferritin chains. Variation in ferritin subunit composition may affect the rates of iron uptake and release in different tissues. A major function of ferritin is the storage of iron in a soluble and nontoxic state. Defects in ferritin proteins are associated with several neurodegenerative diseases. This gene has multiple pseudogenes. Several alternatively spliced transcript variants have been observed, but their biological validity has not been determined. [6]

Interactions

FTH1 has been shown to interact with ferritin light chain. [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Ferritin</span> Iron-carrying protein

Ferritin is a universal intracellular protein that stores iron and releases it in a controlled fashion. The protein is produced by almost all living organisms, including archaea, bacteria, algae, higher plants, and animals. It is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in a soluble and non-toxic form. In humans, it acts as a buffer against iron deficiency and iron overload.

<span class="mw-page-title-main">MT-ND6</span> Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND6 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 6 protein (ND6). The ND6 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variations in the human MT-ND6 gene are associated with Leigh's syndrome, Leber's hereditary optic neuropathy (LHON) and dystonia.

<span class="mw-page-title-main">MT-ND4</span> Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND4 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 4 (ND4) protein. The ND4 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variations in the MT-ND4 gene are associated with age-related macular degeneration (AMD), Leber's hereditary optic neuropathy (LHON), mesial temporal lobe epilepsy (MTLE) and cystic fibrosis.

<span class="mw-page-title-main">MT-ND2</span> Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND2 is a gene of the mitochondrial genome coding for the NADH dehydrogenase 2 (ND2) protein. The ND2 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variants of human MT-ND2 are associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Leigh's syndrome (LS), Leber's hereditary optic neuropathy (LHON) and increases in adult BMI.

<span class="mw-page-title-main">Gamma-aminobutyric acid receptor subunit gamma-2</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit gamma-2 is a protein that in humans is encoded by the GABRG2 gene.

<span class="mw-page-title-main">NFYA</span> Protein-coding gene in the species Homo sapiens

Nuclear transcription factor Y subunit alpha is a protein that in humans is encoded by the NFYA gene.

<span class="mw-page-title-main">GABPA</span> Protein-coding gene in the species Homo sapiens

GA-binding protein alpha chain is a protein that in humans is encoded by the GABPA gene.

<span class="mw-page-title-main">MT-ND1</span> Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND1 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 1 (ND1) protein. The ND1 protein is a subunit of NADH dehydrogenase, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variants of the human MT-ND1 gene are associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Leigh's syndrome (LS), Leber's hereditary optic neuropathy (LHON) and increases in adult BMI.

<span class="mw-page-title-main">CLTC</span> Protein-coding gene in the species Homo sapiens

Clathrin heavy chain 1 is a protein that in humans is encoded by the CLTC gene.

<span class="mw-page-title-main">4F2 cell-surface antigen heavy chain</span> Protein found in humans

4F2 cell-surface antigen heavy chain is a protein that in humans is encoded by the SLC3A2 gene.

<span class="mw-page-title-main">Ferritin light chain</span> Protein found in humans

Ferritin light chain is a protein that in humans is encoded by the FTL gene. Ferritin is the major protein responsible for storing intracellular iron in prokaryotes and eukaryotes. It is a heteropolymer consisting of 24 subunits, heavy and light ferritin chains. This gene has multiple pseudogenes.

<span class="mw-page-title-main">40S ribosomal protein S27a</span> Protein-coding gene in the species Homo sapiens

40S ribosomal protein S27a is a protein that in humans is encoded by the RPS27A gene.

<span class="mw-page-title-main">PFKL</span> Mammalian protein found in Homo sapiens

6-phosphofructokinase, liver type (PFKL) is an enzyme that in humans is encoded by the PFKL gene on chromosome 21. This gene encodes the liver (L) isoform of phosphofructokinase-1, an enzyme that catalyzes the conversion of D-fructose 6-phosphate to D-fructose 1,6-bisphosphate, which is a key step in glucose metabolism (glycolysis). This enzyme is a tetramer that may be composed of different subunits encoded by distinct genes in different tissues. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2014]

<span class="mw-page-title-main">Interleukin 13 receptor, alpha 1</span> Protein-coding gene in the species Homo sapiens

Interleukin 13 receptor, alpha 1, also known as IL13RA1 and CD213A1, is a human gene.

<span class="mw-page-title-main">Myosin-11</span> Protein-coding gene in the species Homo sapiens

Myosin-11 is a protein that in humans is encoded by the MYH11 gene.

<span class="mw-page-title-main">GABRR1</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit rho-1 is a protein that in humans is encoded by the GABRR1 gene.

<span class="mw-page-title-main">UQCRC1</span> Protein-coding gene in the species Homo sapiens

Cytochrome b-c1 complex subunit 1, mitochondrial is a protein that in humans is encoded by the UQCRC1 gene.

<span class="mw-page-title-main">IL2RB</span> Protein-coding gene in the species Homo sapiens

Interleukin-2 receptor subunit beta is a protein that in humans is encoded by the IL2RB gene. Also known as CD122; IL15RB; P70-75.

<span class="mw-page-title-main">GABRR2</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit rho-2 is a protein that in humans is encoded by the GABRR2 gene.

<span class="mw-page-title-main">Mitochondrial ferritin</span> Protein-coding gene in the species Homo sapiens

Mitochondrial ferritin is a ferroxidase enzyme that in humans is encoded by the FTMT gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000167996 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024661 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hentze MW, Keim S, Papadopoulos P, O'Brien S, Modi W, Drysdale J, Leonard WJ, Harford JB, Klausner RD (October 1986). "Cloning, characterization, expression, and chromosomal localization of a human ferritin heavy-chain gene". Proceedings of the National Academy of Sciences of the United States of America. 83 (19): 7226–30. Bibcode:1986PNAS...83.7226H. doi: 10.1073/pnas.83.19.7226 . PMC   386688 . PMID   3020541.
  6. 1 2 "Entrez Gene: FTH1 ferritin, heavy polypeptide 1".
  7. "Hemochromatosis type 5 - About the Disease - Genetic and Rare Diseases Information Center".
  8. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  9. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (September 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. hdl: 11858/00-001M-0000-0010-8592-0 . PMID   16169070. S2CID   8235923.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.