Flexible organic light-emitting diode

Last updated
Demonstration of a battery-driven flexible OLED lamp from Merck KGaA OLED 01.jpg
Demonstration of a battery-driven flexible OLED lamp from Merck KGaA
Demonstration of a 4.1" prototype flexible display from Sony Ecran oled flexible.jpg
Demonstration of a 4.1" prototype flexible display from Sony

A flexible organic light-emitting diode (FOLED) is a type of organic light-emitting diode (OLED) incorporating a flexible plastic substrate on which the electroluminescent organic semiconductor is deposited. This enables the device to be bent or rolled while still operating. Currently the focus of research in industrial and academic groups, flexible OLEDs form one method of fabricating a rollable display.


Technical details and applications

An OLED emits light due to the electroluminescence of thin films of organic semiconductors approximately 100 nm thick. Regular OLEDs are usually fabricated on a glass substrate, but by replacing glass with a flexible plastic such as polyethylene terephthalate (PET) [1] among others, [2] OLEDs can be made both bendable and lightweight.

Such materials may not be suitable for comparable devices based on inorganic semiconductors due to the need for lattice matching and the high temperature fabrication procedure involved. [3]

In contrast, flexible OLED devices can be fabricated by deposition of the organic layer onto the substrate using a method derived from inkjet printing, [4] [5] allowing the inexpensive and roll-to-roll fabrication of printed electronics.

Flexible OLEDs may be used in the production of rollable displays, electronic paper, or bendable displays which can be integrated into clothing, wallpaper or other curved surfaces. [6] [7] [8] Prototype displays have been exhibited by companies such as Sony, which are capable of being rolled around the width of a pencil. [9]


Both flexible substrate itself as well as the process of bending the device introduce stress into the materials. There may be residual stress from the deposition of layers onto a flexible substrate, [10] thermal stresses due to the different coefficient of thermal expansion of materials in the device, [11] in addition to the external stress from the bending of the device. [12]

Stress introduced into the organic layers may lower the efficiency or brightness of the device as it is deformed, or cause complete breakdown of the device altogether. Indium tin oxide (ITO), the material most commonly used as the transparent anode, is brittle. Fracture of the anode can occur which can increase the sheet resistance of the ITO or disrupt the layered structure of the OLED. [13] Although ITO is the most common and best understood anode material used in OLEDs, research has been undertaken into alternative materials that are better suited for flexible applications including carbon nanotubes. [14] [15]

Encapsulation is another challenge for flexible OLED devices. The materials in an OLED are sensitive to air and moisture which lead to degradation of the materials themselves as well as quenching of excited states within the molecule. The common method of encapsulation for regular OLEDs is to seal the organic layer between glass. Flexible encapsulation methods are generally not as effective a barrier to air and moisture as glass, and current research aims to improve the encapsulation of flexible organic light emitting diodes. [16] [17]

See also

Related Research Articles

Organic electronics

Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic small molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) small molecules or polymers using synthetic strategies developed in the context of organic and polymer chemistry. One of the promised benefits of organic electronics is their potential low cost compared to traditional inorganic electronics. Attractive properties of polymeric conductors include their electrical conductivity that can be varied by the concentrations of dopants. Relative to metals, they have mechanical flexibility. Some have high thermal stability.

OLED Diode which emits light from an organic compound

An organic light-emitting diode, also known as an organic EL diode, is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light in response to an electric current. This organic layer is situated between two electrodes; typically, at least one of these electrodes is transparent. OLEDs are used to create digital displays in devices such as television screens, computer monitors, portable systems such as smartphones, handheld game consoles and PDAs. A major area of research is the development of white OLED devices for use in solid-state lighting applications.

Flexible electronics technology for assembling electronic circuits by mounting electronic devices on flexible plastic substrates, such as polyimide, PEEK or transparent conductive polyester film

Flexible electronics, also known as flex circuits, is a technology for assembling electronic circuits by mounting electronic devices on flexible plastic substrates, such as polyimide, PEEK or transparent conductive polyester film. Additionally, flex circuits can be screen printed silver circuits on polyester. Flexible electronic assemblies may be manufactured using identical components used for rigid printed circuit boards, allowing the board to conform to a desired shape, or to flex during its use. An alternative approach to flexible electronics suggests various etching techniques to thin down the traditional silicon substrate to few tens of micrometers to gain reasonable flexibility, referred to as flexible silicon.

Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can either be described as a ceramic or alloy. Indium tin oxide is typically encountered as an oxygen-saturated composition with a formulation of 74% In, 18% O2, and 8% Sn by weight. Oxygen-saturated compositions are so typical, that unsaturated compositions are termed oxygen-deficient ITO. It is transparent and colorless in thin layers, while in bulk form it is yellowish to grey. In the infrared region of the spectrum it acts as a metal-like mirror.

Conductive polymer

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage of conductive polymers is their processability, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation.

Organic field-effect transistor

An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or by mechanical transfer of a peeled single-crystalline organic layer onto a substrate. These devices have been developed to realize low-cost, large-area electronic products and biodegradable electronics. OFETs have been fabricated with various device geometries. The most commonly used device geometry is bottom gate with top drain and source electrodes, because this geometry is similar to the thin-film silicon transistor (TFT) using thermally grown SiO2 as gate dielectric. Organic polymers, such as poly(methyl-methacrylate) (PMMA), can also be used as dielectric.

PEDOT:PSS polymer

PEDOT:PSS or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate is a polymer mixture of two ionomers. One component in this mixture is made up of sodium polystyrene sulfonate which is a sulfonated polystyrene. Part of the sulfonyl groups are deprotonated and carry a negative charge. The other component poly(3,4-ethylenedioxythiophene) or PEDOT is a conjugated polymer and carries positive charges and is based on polythiophene. Together the charged macromolecules form a macromolecular salt.

Rollable display type of screen that can be rolled up like a scroll without the image or text being distorted

A rollable display, also known as a flexible display, is a type of screen that can be rolled up like a scroll without the image or text being distorted. Technologies involved in building a rollable display include electronic ink, Gyricon, Organic LCD, and OLED.

Phosphorescent organic light-emitting diodes (PHOLED) are a type of organic light-emitting diode (OLED) that use the principle of phosphorescence to obtain higher internal efficiencies than fluorescent OLEDs. This technology is currently under development by many industrial and academic research groups.

Printed electronics

Printed electronics is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. By electronic industry standards, these are low cost processes. Electrically functional electronic or optical inks are deposited on the substrate, creating active or passive devices, such as thin film transistors; capacitors; coils; resistors. Printed electronics is expected to facilitate widespread, very low-cost, low-performance electronics for applications such as flexible displays, smart labels, decorative and animated posters, and active clothing that do not require high performance.

PEDOT-TMA chemical compound

Poly(3,4-ethylenedioxythiophene)-tetramethacrylate or PEDOT-TMA is a p-type conducting polymer based on 3,4-ethylenedioxylthiophene or the EDOT monomer. It is a modification of the PEDOT structure. Advantages of this polymer relative to PEDOT are that it is dispersible in organic solvents, and it is non-corrosive. PEDOT-TMA was developed under a contract with the National Science Foundation, and it was first announced publicly on April 12, 2004. The trade name for PEDOT-TMA is Oligotron. PEDOT-TMA was featured in an article entitled "Next Stretch for Plastic Electronics" that appeared in Scientific American in 2004. The U.S. Patent office issued a patent protecting PEDOT-TMA on April 22, 2008.

Organic photovoltaic devices (OPVs) are fabricated from thin films of organic semiconductors, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to conventional solar cells made of crystalline silicon, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency.

Organic solar cell

An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells.

A light-emitting electrochemical cell is a solid-state device that generates light from an electric current (electroluminescence). LECs are usually composed of two metal electrodes connected by an organic semiconductor containing mobile ions. Aside from the mobile ions, their structure is very similar to that of an organic light-emitting diode (OLED).

Steven Van Slyke American chemist

Steven Van Slyke is an American chemist, best known for his co-invention of the Organic Light Emitting Diode (OLED) and his contributions to the commercial development of OLED displays. Van Slyke is currently the Chief Technology Officer at Kateeva, Inc. Prior to joining Kateeva, he held various positions at Eastman Kodak and was involved in all aspects of OLED Technology, from basic materials development to implementation of full-color OLED display manufacturing.

Quantum dot display display technology that uses quantum dots, semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light

A quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light.

Polyfluorene chemical compound

Polyfluorenes are a class of polymeric materials. They are of interest because similar to other conjugated polymers, they are currently being investigated for use in light-emitting diodes, field-effect transistors, and plastic solar cells. They are not a naturally occurring material, but are designed and synthesized for their applications. Modern chemistry has enabled adaptable synthesis and control over polyfluorenes that has facilitated use in many organic electronic applications.

Universal Display Corporation is a developer and manufacturer of organic light emitting diodes (OLED) technologies and materials as well as provider of services to the display and lighting industries. It is also an OLED research company. Founded in 1994, the company currently owns or has exclusive, co-exclusive or sole license rights with respect to more than 3,000 issued and pending patents worldwide for the commercialization of phosphorescent based OLEDs and also flexible, transparent and stacked OLEDs - for both display and lighting applications. Its phosphorescent OLED technologies and materials are licensed and supplied to companies such as Samsung, LG, AU Optronics CMEL, Pioneer, Panasonic Idemitsu OLED lighting and Konica Minolta.

Thermally Activated Delayed Fluorescence (TADF) is a process through which a molecular species in a non-emitting excited state can incorporate surrounding thermal energy to change states and only then undergo light emission. The TADF process involves an excited molecular species in a triplet state, which commonly has a forbidden transition to the ground state termed phosphorescence. By absorbing nearby thermal energy the triplet state can undergo reverse intersystem crossing (RISC) converting it to a singlet state, which can then de-excite to the ground state and emit light in a process termed fluorescence. Along with fluorescent and phosphorescent compounds, TADF compounds are one of the three main light-emitting materials used in organic light-emitting diodes (OLEDs).


  1. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. (1992). "Flexible light-emitting diodes made from soluble conducting polymers". Nature. 357 (6378): 477. Bibcode:1992Natur.357..477G. doi:10.1038/357477a0.
  2. MacDonald, W. A. (2004). "Engineered films for display technologies". Journal of Materials Chemistry. 14: 4–10. doi:10.1039/B310846P.
  3. Burrows, P. E.; Gu, G.; Bulovic, V.; Shen, Z.; Forrest, S. R.; Thompson, M. E. (1997). "Achieving full-color organic light-emitting devices for lightweight, flat-panel displays". IEEE Transactions on Electron Devices. 44 (8): 1188–1203. Bibcode:1997ITED...44.1188B. doi:10.1109/16.605453.
  4. Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C. (1998). "Ink-jet printing of doped polymers for organic light emitting devices". Applied Physics Letters. 72 (5): 519–521. Bibcode:1998ApPhL..72..519H. doi:10.1063/1.120807.
  5. Bharathan, Jayesh; Yang, Yang (1998). "Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo". Applied Physics Letters. 72 (21): 2660–2662. Bibcode:1998ApPhL..72.2660B. doi:10.1063/1.121090.
  6. Brandon Bailey (31 January 2011). "Flexible electronic display will get Army field test". Los Angeles Times. Retrieved 3 February 2011.
  7. "'Light emitting wallpaper' could replace bulbs". BBC News. 30 December 2009. Retrieved 3 February 2011.
  8. Michael Fitzpatrick (5 July 2010). "Haptics brings a personal touch to technology". BBC News. Retrieved 3 February 2011.
  9. Candace Lombardi (26 May 2010). "Sony unveils ultrathin rollable OLED". CNET News. Retrieved 3 February 2011.
  10. Chiang, C.-J.; Winscom, C.; Monkman, A. (2010). "Electroluminescence characterization of FOLED devices under two type of external stresses caused by bending". Organic Electronics. 11 (11): 1870–1875. doi:10.1016/j.orgel.2010.08.021.
  11. Hsueh, C. H. (2002). "Thermal stresses in elastic multilayer systems". Thin Solid Films. 418 (2): 182–188. Bibcode:2002TSF...418..182H. doi:10.1016/S0040-6090(02)00699-5.
  12. Chiang, C.-J.; Winscom, C.; Bull, S.; Monkman, A. (2009). "Mechanical modeling of flexible OLED devices". Organic Electronics. 10 (7): 1268–1274. doi:10.1016/j.orgel.2009.07.003.
  13. Leterrier, Y.; Médico, L.; Månson, J.-A. E.; Betz, U.; Escolà, M. F.; Kharrazi Olsson, M.; Atamny, F. (2004). "Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays". Thin Solid Films. 460 (1–2): 156–166. Bibcode:2004TSF...460..156L. doi:10.1016/j.tsf.2004.01.052.
  14. Choi, K.-H.; Nam, H.-J.; Jeong, J.-A.; Cho, S.-W.; Kim, H.-K.; Kang, J.-W.; Kim, D.-G.; Cho, W.-J. (2009). "Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes". Applied Physics Letters. 92 (22): 223302. Bibcode:2008ApPhL..92v3302C. doi:10.1063/1.2937845.
  15. Aguirre, C. M.; Auvray, S.; Pigeon, S.; Izquierdo, R.; Desjardins, P.; Martel, R. (2006). "Carbon nanotube sheets as electrodes in organic light-emitting diodes" (PDF). Applied Physics Letters. 88 (18): 183104. Bibcode:2006ApPhL..88r3104A. doi:10.1063/1.2199461.
  16. Han, J.-M.; Han, J.-W.; Chun, J.-Y.; Ok, C.-H.; Seo, D.-S. (2008). "Novel Encapsulation Method for Flexible Organic Light-Emitting Diodes using Poly(dimethylsiloxane)". Japanese Journal of Applied Physics. 47 (12): 8986–8988. Bibcode:2008JaJAP..47.8986H. doi:10.1143/JJAP.47.8986.
  17. Liu, S.; Zhang, D.; Li, Y.; Duan, L.; Dong, G.; Wang, L.; Qiu, Y. (2008). "New hybrid encapsulation for flexible organic light-emitting devices on plastic substrates". Chinese Science Bulletin. 53 (6): 958–960. doi:10.1007/s11434-008-0088-9.