Flumequine

Last updated
Flumequine
Flumequine.svg
Clinical data
Other names9-Fluoro-6,7-dihydro-5-methyl-1-oxo-1H,5H-benzo[ij]-quinolizine-2-carboxylic acid
AHFS/Drugs.com International Drug Names
ATC code
Legal status
Legal status
  • removed from clinical use
Pharmacokinetic data
Excretion urine and feces
Identifiers
  • 7-fluoro-12-methyl-4-oxo-1-azatricyclo[7.3.1.05,13]trideca-2,5,7,9(13)-tetraene-3-carboxylic acid
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
CompTox Dashboard (EPA)
ECHA InfoCard 100.050.857 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C14H12FNO3
Molar mass 261.252 g·mol−1
3D model (JSmol)
Melting point 253 to 255 °C (487 to 491 °F)
  • Fc2cc1C(=O)/C(C(=O)O)=C\N3c1c(c2)CCC3C
  • InChI=1S/C14H12FNO3/c1-7-2-3-8-4-9(15)5-10-12(8)16(7)6-11(13(10)17)14(18)19/h4-7H,2-3H2,1H3,(H,18,19) X mark.svgN
  • Key:DPSPPJIUMHPXMA-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Flumequine [1] is a synthetic fluoroquinolone antibiotic [2] [3] used to treat bacterial infections. It is a first-generation fluoroquinolone antibacterial that has been removed from clinical use and is no longer being marketed. [4] The marketing authorization of flumequine has been suspended throughout the EU. [5] It kills bacteria by interfering with the enzymes that cause DNA to unwind and duplicate. Flumequine was used in veterinarian medicine for the treatment of enteric infections (all infections of the intestinal tract), [6] as well as to treat cattle, swine, chickens, and fish, but only in a limited number of countries. [4] [7] [8] It was occasionally used in France (and a few other European Countries) to treat urinary tract infections under the trade name Apurone. [4] [9] However this was a limited indication [10] because only minimal serum levels were achieved. [11]

Contents

History

The first quinolone used was nalidixic acid (was marketed in many countries as Negram) followed by the fluoroquinolone flumequine. [4] The first-generation fluoroquinolone agents, such as flumequine, had poor distribution into the body tissues and limited activity. As such they were used mainly for treatment of urinary tract infections. Flumequine (benzo quinolizine) was first patented in 1973, (German Patent) by Rikker Labs. [12] Flumequine is a known antimicrobial compound described and claimed in U.S. Pat. No. 3,896,131 (Example 3), July 22, 1975. [13] Flumequine is the first quinolone compound with a fluorine atom at the C6-position of the related quinolone basic molecular structure. [14] Even though this was the first fluoroquinolone, it is often overlooked when classifying the drugs within this class by generations and excluded from such a list.

Though used frequently to treat farm animals and on occasion household pets, flumequine was also used to treat urinary tract infections in humans. Flumequine, was used transiently treat urinary infections [9] until ocular toxicity was reported. [15] [16] [17] as well as liver damage [18] and anaphylactic shock. [19] [20]

In 2008, the United States Food and Drug Administration (FDA) requested that all quinolone/fluoroquinolone drugs package inserts include a Black Boxed Warning concerning the risk of spontaneous tendon ruptures, which would have included flumequine. The FDA also requested that the manufacturers send out Dear Doctor Letters regarding this new warning. Such tendon problems have also been associated with flumequine. [21]

Drug residue

The use of flumequine in food animals had sparked considerable debate. Significant and harmful residues of quinolones have been found in animals treated with quinolones and later slaughtered and sold as food products. There has been significant concern regarding the amount of flumequine residue found within food animals such as fish, poultry and cattle. [22] [23] In 2003 the Joint FAO/WHO Committee on Food Additives (JECFA) withdrew the maximum residue limits (MRLs) for flumequine and carbadox based on evidence showing both are direct acting genotoxic carcinogens, therefore the Committee was unable to establish an Acceptable Daily Intake (ADI) for human exposure to such residues. [24] Subsequently, in 2006, the JEFCA, re-established the ADI having received appropriate evidence and MRLs were re-specified. The role of JECFA is to evaluate toxicology, residue chemistry and related information and make recommendations for acceptable daily intake (ADI) levels and maximum residue limits (MRLs). At its 16th session, held May 2006, the Committee on Residues of Veterinary Drugs in Foods (CCRVDF) requested information on registered uses of flumequine. As the CCRVDF did not receive any information regarding the registered uses of flumequine that they had requested, the committee members agreed to discontinue work on the MRLs for flumequine in shrimp. [25] [26]

Licensed uses

Urinary tract infections (veterinary and human) [27]

Availability

Veterinary use:

Human use:

Mode of action

Flumequine is a member of the quinolone antibiotics family, which are active against both Gram-positive and Gram-negative bacteria. It functions by inhibiting DNA gyrase, a type II topoisomerase, and topoisomerase IV, [28] enzymes necessary to separate bacterial DNA, thereby inhibiting cell division.

This mechanism can also affect mammalian cell replication. In particular, some congeners of this drug family (for example those that contain the C-8 fluorine), [29] display high activity not only against bacterial topoisomerases, but also against eukaryotic topoisomerases and are toxic to cultured mammalian cells and in vivo tumor models. [30]

Although quinolones are highly toxic to mammalian cells in culture, its mechanism of cytotoxic action is not known. Quinolone induced DNA damage was first reported in 1986 (Hussy et al.). [31]

Recent studies have demonstrated a correlation between mammalian cell cytotoxicity of the quinolones and the induction of micronuclei. [32] [33] [34] [35]

As such, some fluoroquinolones may cause injury to the chromosome of eukaryotic cells. [36] [37] [38] [39] [40] [41]

There continues to be considerable debate as to whether or not this DNA damage is to be considered one of the mechanisms of action concerning the severe adverse reactions experienced by some patients following fluoroquinolone therapy. [30] [42]

Adverse reactions

Flumequine was associated with severe ocular toxicity, which precluded its use in human patients. [15] [16] [17] Drug-induced calculi (kidney stones) has been associated with such therapy as well. [43] [44] [45] Anaphylactic shock induced by flumequine therapy has also been associated with its use. [19] [20] [46] Anaphylactoid reactions such as shock, urticaria, and Quincke’s oedema have been reported to generally appear within two hours after taking the first tablet. There were eighteen reports listed within the WHO file in 1996. [47] As with all drugs within this class, flumequine therapy may result in severe central nervous system (CNS) reactions, [48] [49] [50] phototoxicity resulting in skin reactions like erythema, pruritus, urticaria and severe rashes, [51] [52] gastrointestinal and neurological disorders. [9]

Drug interactions

Flumequine was found to have no effect on theophylline pharmacokinetics. [53]

Chemistry

Flumequine is a 9-fluoro-6,7-dihydro-5-methyl-1-oxo-1H,5H-benzo[ij]quinolizine-2-carboxylic acid. The molecular formula is C14H12FNO3. It is a white powder, odorless, flavorless, insoluble in water but soluble in organic solvent. [54]

Pharmacokinetics

Flumequine is considered to be well absorbed and is excreted in the urine and feces as the glucuronide conjugates of the parent drug and 7-hydroxyflumequine. It is eliminated within 168 hours post-dosing. However, studies concerning the calf liver showed additional unidentified residues, of which a new metabolite, ml, represented the major single metabolite 24 hours after the last dose and at all subsequent time points. The metabolite ml, which exhibited no antimicrobial activity, was present in both free and protein-bound fractions. The major residue found in the edible tissues of sheep, pigs, and chickens was parent drug together with minor amounts of the 7-hydroxy-metabolite. The only detected residue in trout was the parent drug. [55]

See also

Related Research Articles

<span class="mw-page-title-main">Ciprofloxacin</span> Fluoroquinolone antibiotic

Ciprofloxacin is a fluoroquinolone antibiotic used to treat a number of bacterial infections. This includes bone and joint infections, intra-abdominal infections, certain types of infectious diarrhea, respiratory tract infections, skin infections, typhoid fever, and urinary tract infections, among others. For some infections it is used in addition to other antibiotics. It can be taken by mouth, as eye drops, as ear drops, or intravenously.

<span class="mw-page-title-main">Levofloxacin</span> Antibiotic

Levofloxacin, sold under the brand name Levaquin among others, is an antibiotic medication. It is used to treat a number of bacterial infections including acute bacterial sinusitis, pneumonia, H. pylori, urinary tract infections, chronic prostatitis, and some types of gastroenteritis. Along with other antibiotics it may be used to treat tuberculosis, meningitis, or pelvic inflammatory disease. Use is generally recommended only when other options are not available. It is available by mouth, intravenously, and in eye drop form.

<span class="mw-page-title-main">Nitrofurantoin</span> Antibacterial drug

Nitrofurantoin is an antibacterial medication of the nitrofuran class used to treat urinary tract infections, although it is not as effective for kidney infections. It is taken by mouth.

<span class="mw-page-title-main">Ofloxacin</span> Antibiotic to treat bacterial infections

Ofloxacin is a quinolone antibiotic useful for the treatment of a number of bacterial infections. When taken by mouth or injection into a vein, these include pneumonia, cellulitis, urinary tract infections, prostatitis, plague, and certain types of infectious diarrhea. Other uses, along with other medications, include treating multidrug resistant tuberculosis. An eye drop may be used for a superficial bacterial infection of the eye and an ear drop may be used for otitis media when a hole in the ear drum is present.

<span class="mw-page-title-main">Nalidixic acid</span> First of the synthetic quinolone antibiotics

Nalidixic acid is the first of the synthetic quinolone antibiotics.

<span class="mw-page-title-main">Norfloxacin</span> Chemical compound, antibiotic

Norfloxacin, sold under the brand name Noroxin among others, is an antibiotic that belongs to the class of fluoroquinolone antibiotics. It is used to treat urinary tract infections, gynecological infections, inflammation of the prostate gland, gonorrhea and bladder infection. Eye drops were approved for use in children older than one year of age.

<span class="mw-page-title-main">Moxifloxacin</span> Antibiotic

Moxifloxacin is an antibiotic, used to treat bacterial infections, including pneumonia, conjunctivitis, endocarditis, tuberculosis, and sinusitis. It can be given by mouth, by injection into a vein, and as an eye drop.

<span class="mw-page-title-main">Enoxacin</span> Chemical compound

Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Insomnia is a common adverse effect. It is no longer available in the United States.

<span class="mw-page-title-main">Gemifloxacin</span> Chemical to treat chronic bronchitis

Gemifloxacin mesylate is an oral broad-spectrum quinolone antibacterial agent used in the treatment of acute bacterial exacerbation of chronic bronchitis and mild-to-moderate pneumonia. Vansen Pharma Inc. has licensed the active ingredient from LG Life Sciences of Korea.

<span class="mw-page-title-main">Sparfloxacin</span> Chemical to treat bacterial infections

Sparfloxacin is a fluoroquinolone antibiotic used in the treatment of bacterial infections. It has a controversial safety profile.

<span class="mw-page-title-main">Cinoxacin</span> Chemical compound

Cinoxacin is a quinolone antibiotic that has been discontinued in the U.K. as well the United States, both as a branded drug or a generic. The marketing authorization of cinoxacin has been suspended throughout the EU.

Topoisomerase inhibitors are chemical compounds that block the action of topoisomerases, which are broken into two broad subtypes: type I topoisomerases (TopI) and type II topoisomerases (TopII). Topoisomerase plays important roles in cellular reproduction and DNA organization, as they mediate the cleavage of single and double stranded DNA to relax supercoils, untangle catenanes, and condense chromosomes in eukaryotic cells. Topoisomerase inhibitors influence these essential cellular processes. Some topoisomerase inhibitors prevent topoisomerases from performing DNA strand breaks while others, deemed topoisomerase poisons, associate with topoisomerase-DNA complexes and prevent the re-ligation step of the topoisomerase mechanism. These topoisomerase-DNA-inhibitor complexes are cytotoxic agents, as the un-repaired single- and double stranded DNA breaks they cause can lead to apoptosis and cell death. Because of this ability to induce apoptosis, topoisomerase inhibitors have gained interest as therapeutics against infectious and cancerous cells.

<span class="mw-page-title-main">Temafloxacin</span> Chemical compound, antibiotic drug

Temafloxacin is a fluoroquinolone antibiotic drug which was withdrawn from sale in the United States shortly after its approval in 1992 because of serious adverse effects resulting in three deaths. It is not marketed in Europe.

<span class="mw-page-title-main">Fleroxacin</span> Chemical compound

Fleroxacin is a quinolone antibiotic. It is sold under the brand names Quinodis and Megalocin.

<span class="mw-page-title-main">Prulifloxacin</span> Chemical compound

Prulifloxacin is an older synthetic antibiotic of the fluoroquinolone class undergoing clinical trials prior to a possible NDA submission to the U.S. Food and Drug Administration (FDA). It is a prodrug which is metabolized in the body to the active compound ulifloxacin. It was developed over two decades ago by Nippon Shinyaku Co. and was patented in Japan in 1987 and in the United States in 1989.

<span class="mw-page-title-main">Difloxacin</span> Chemical compound

Difloxacin (INN), marketed under the trade name Dicural, is a second-generation, synthetic fluoroquinolone antibiotic used in veterinary medicine. It has broad-spectrum, concentration dependent, bactericidal activity; however, its efficacy is not as good as enrofloxacin or pradofloxacin.

<span class="mw-page-title-main">Clinafloxacin</span> Chemical compound

Clinafloxacin is an investigational fluoroquinolone antibiotic. Despite its promising antibiotic activity, the clinical development of clinafloxacin has been hampered by its risk for inducing serious side effects.

<span class="mw-page-title-main">Quinolone antibiotic</span> Class of antibacterial drugs, subgroup of quinolones

Quinolone antibiotics constitute a large group of broad-spectrum bacteriocidals that share a bicyclic core structure related to the substance 4-quinolone. They are used in human and veterinary medicine to treat bacterial infections, as well as in animal husbandry, specifically poultry production.

Antimicrobials destroy bacteria, viruses, fungi, algae, and other microbes. The cells of bacteria (prokaryotes), such as salmonella, differ from those of higher-level organisms (eukaryotes), such as fish. Antibiotics are chemicals designed to either kill or inhibit the growth of pathogenic bacteria while exploiting the differences between prokaryotes and eukaryotes in order to make them relatively harmless in higher-level organisms. Antibiotics are constructed to act in one of three ways: by disrupting cell membranes of bacteria, by impeding DNA or protein synthesis, or by hampering the activity of certain enzymes unique to bacteria.

<span class="mw-page-title-main">Finafloxacin</span> Chemical compound

Finafloxacin (Xtoro) is a fluoroquinolone antibiotic. In the United States, it is approved by the Food and Drug Administration to treat acute otitis externa caused by the bacteria Pseudomonas aeruginosa and Staphylococcus aureus.

References

  1. INN: Lomefloxacin Hydrochloride
  2. Nelson JM, Chiller TM, Powers JH, Angulo FJ (April 2007). "Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story". Clinical Infectious Diseases. 44 (7): 977–980. doi: 10.1086/512369 . PMID   17342653.
  3. Kawahara S (December 1998). "[Chemotherapeutic agents under study]". Nihon Rinsho. Japanese Journal of Clinical Medicine (in Japanese). 56 (12): 3096–3099. PMID   9883617.
  4. 1 2 3 4 "Quinolones and fluoroquinolones". Pharmacorama. Archived from the original on 2019-05-12. Retrieved 2010-04-04.
  5. "Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics". European Medicines Agency. 11 March 2019.
  6. Francis PG, Wells RJ (1998). "Flumequine". Joint FAO/WHO Expert Committee on Food Additives. Residues of some veterinary drugs in animals and foods. Rome: Food and Agriculture Organization. ISBN   92-5-104128-8. OCLC   39798999.
  7. Use of quinolones in food animals and potential impact on human health (PDF). WHO meeting. Geneva, Switzerland: World Health Organization. June 1998. Archived from the original (PDF) on 14 January 2010. Cattle only in Europe and Latin America. (Limited use in Latin America), Poultry only in Europe, Asia and Latin America, Fish only in Asia
  8. Lavenberg DL. "IX4Q 4586, Brrytrit 3.23% Concentrate Solution for Use in Chicken Drinking Water, Genera. Correspondence, Published Literure" (PDF). Bayer. Archived from the original (PDF) on 5 October 2012 via U.S. Food and Drug Administration. Quinalones are often used to treat severe cases of human infection with Campylobacter spp., and they are also used in veterinary medicine, especially for treating poultry.
  9. 1 2 3 Schena FP, Gesualdo L, Caracciolo G (January 1988). "A multicentre study of flumequine in the treatment of urinary tract infections". The Journal of Antimicrobial Chemotherapy. 21 (1): 101–106. doi:10.1093/jac/21.1.101. PMID   3356617.
  10. The quinolones (Third Edition 2000) By Vincent T. Andriole Chapter I History and overview By Dr. Peter Ball (page 5)
  11. King DE, Malone R, Lilley SH (May 2000). "New classification and update on the quinolone antibiotics". American Family Physician. 61 (9): 2741–2748. PMID   10821154.
  12. "Generics (UK) Ltd v Daiichi Pharmaceutical Co Ltd". Reports of Patent, Design and Trade Mark Cases. 126 (2): 102. 2009. doi: 10.1093/rpc/rcn037 .
  13. "Substituted benzo(ij)quinolizine-2-carboxylic acids and derivatives thereof - Patent 3896131". Freepatentsonline.com. Retrieved 2010-04-04.
  14. Takahashi H, Hayakawa I, Akimoto T (2003). "[The history of the development and changes of quinolone antibacterial agents]". Yakushigaku Zasshi (in Japanese). 38 (2): 161–179. PMID   15143768.
  15. 1 2 Sirbat D, Saudax E, Hurault de Ligny B, Hachet E, Abellan P, George JL (1983). "[Serous macular detachment and treatment with flumequine (Apurone = urinary antibacterial). Apropos of 2 cases]". Bulletin des Sociétés d'Ophtalmologie de France (in French). 83 (8–9): 1019–1021. PMID   6378414.
  16. 1 2 Hurault de Ligny B, Sirbat D, Kessler M, Trechot P, Chanliau J (1984). "[Ocular side effects of flumequine. 3 cases of macular involvement]". Therapie (in French). 39 (5): 595–600. PMID   6506018.
  17. 1 2 Ball P (July 2000). "Quinolone generations: natural history or natural selection?". The Journal of Antimicrobial Chemotherapy. 46 (Suppl T1): 17–24. doi: 10.1093/oxfordjournals.jac.a020889 . PMID   10997595.
  18. Dubois A, Janbon C, Pignodel C, Marty-Double C (February 1983). "[Immunoallergic hepatitis induced by flumequine]". Gastroenterologie Clinique et Biologique (in French). 7 (2): 217–218. PMID   6840466.
  19. 1 2 Pinzani V, Gennaro G, Petit P, Blayac JP (1992). "[Anaphylactic shock induced by flumequine]". Therapie (in French). 47 (5): 440. PMID   1299991.
  20. 1 2 Marsepoil T, Blin F, Lo JM, Horel D'Ancona F, Sebbah JL (September 1985). "[A case of anaphylactic shock induced by flumequine]". Presse Médicale (in French). 14 (32): 1712. PMID   2932732.
  21. "Fluoroquinolones- A Review– Dr.T R RAMANUJAM.M.D". Medindia.net. Retrieved 2010-04-04.
  22. Karbiwnyk CM, Hibbard LE, Lee RH, et al. (April 27–28, 2005). Confirmation of Oxolinic Acid and Flumequine Residues in Shrimp by Liquid Chromatography with Tandem Mass Spectrometry Detection. FDA Science.
  23. "Chemotherapeutics in Seafood Compliance Program: Chapter 4: Pesticides and Chemical Contaminants" (PDF). Compliance Program Guidance Manual. U.S. Food and Drug Administration. 7304.018. Archived from the original (PDF) on 7 March 2011. Residue found in Catfish/Basa, Shrimp, salmon, trout
  24. "FAO/WHO Expert Committee on Food Additives, Geneva, Switzerland". Fda.gov. 2009-10-28. Retrieved 2010-04-04.
  25. "FDA Veterinarian Newsletter, Volume XXII, No. V, 2007" (PDF). Food and Drug Administration . Retrieved 2010-04-04.
  26. "Codex Committee on Veterinary Drug Residues Acts on Several Documents at 17th Session". Fda.gov. 2009-10-28. Retrieved 2010-04-04.
  27. WHO Drug Information Vol. 2, No. 3, 1988
  28. Drlica K, Zhao X (September 1997). "DNA gyrase, topoisomerase IV, and the 4-quinolones". Microbiology and Molecular Biology Reviews. 61 (3): 377–392. doi:10.1128/mmbr.61.3.377-392.1997. PMC   232616 . PMID   9293187.
  29. Robinson MJ, Martin BA, Gootz TD, McGuirk PR, Osheroff N (April 1992). "Effects of novel fluoroquinolones on the catalytic activities of eukaryotic topoisomerase II: Influence of the C-8 fluorine group". Antimicrobial Agents and Chemotherapy. 36 (4): 751–756. doi:10.1128/aac.36.4.751. PMC   189387 . PMID   1323952.
  30. 1 2 Sissi C, Palumbo M (November 2003). "The quinolone family: from antibacterial to anticancer agents". Current Medicinal Chemistry. Anti-Cancer Agents. 3 (6): 439–450. doi:10.2174/1568011033482279. PMID   14529452. The present review focuses on the structural modifications responsible for the transformation of an antibacterial into an anticancer agent. Indeed, a distinctive feature of drugs based on the quinolone structure is their remarkable ability to target different type II topoisomerase enzymes. In particular, some congeners of this drug family display high activity not only against bacterial topoisomerases but also against eukaryotic topoisomerases and are toxic to cultured mammalian cells and in vivo tumor models
  31. Hussy P, Maass G, Tümmler B, Grosse F, Schomburg U (June 1986). "Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase alpha primase complex, topoisomerases I and II, and growth of mammalian lymphoblasts". Antimicrobial Agents and Chemotherapy. 29 (6): 1073–1078. doi:10.1128/AAC.29.6.1073. PMC   180502 . PMID   3015015.
  32. Hosomi J, Maeda A, Oomori Y, Irikura T, Yokota T (1988). "Mutagenicity of Norfloxacin and AM-833 in Bacteria and Mammalian Cells". Reviews of Infectious Diseases. 10 (Supplement 1): S148–9. JSTOR   4454399.
  33. Forsgren A, Bredberg A, Pardee AB, Schlossman SF, Tedder TF (May 1987). "Effects of ciprofloxacin on eucaryotic pyrimidine nucleotide biosynthesis and cell growth". Antimicrobial Agents and Chemotherapy. 31 (5): 774–779. doi:10.1128/AAC.31.5.774. PMC   174831 . PMID   3606077.
  34. Gootz TD, Barrett JF, Sutcliffe JA (January 1990). "Inhibitory effects of quinolone antibacterial agents on eucaryotic topoisomerases and related test systems". Antimicrobial Agents and Chemotherapy. 34 (1): 8–12. doi:10.1128/AAC.34.1.8. PMC   171510 . PMID   2158274.
  35. Lawrence JW, Darkin-Rattray S, Xie F, Neims AH, Rowe TC (February 1993). "4-Quinolones cause a selective loss of mitochondrial DNA from mouse L1210 leukemia cells". Journal of Cellular Biochemistry. 51 (2): 165–174. doi:10.1002/jcb.240510208. PMID   8440750. S2CID   41291987.
  36. Elsea SH, Osheroff N, Nitiss JL (July 1992). "Cytotoxicity of quinolones toward eukaryotic cells. Identification of topoisomerase II as the primary cellular target for the quinolone CP-115,953 in yeast". The Journal of Biological Chemistry. 267 (19): 13150–13153. doi: 10.1016/S0021-9258(18)42185-0 . PMID   1320012.
  37. Suto MJ, Domagala JM, Roland GE, Mailloux GB, Cohen MA (December 1992). "Fluoroquinolones: relationships between structural variations, mammalian cell cytotoxicity, and antimicrobial activity". Journal of Medicinal Chemistry. 35 (25): 4745–4750. doi:10.1021/jm00103a013. PMID   1469702.
  38. Enzmann H, Wiemann C, Ahr HJ, Schlüter G (April 1999). "Damage to mitochondrial DNA induced by the quinolone Bay y 3118 in embryonic turkey liver". Mutation Research. 425 (2): 213–224. doi:10.1016/S0027-5107(99)00044-5. PMID   10216214.
  39. Kashida Y, Sasaki YF, Ohsawa K, Yokohama N, Takahashi A, Watanabe T, Mitsumori K (October 2002). "Mechanistic study on flumequine hepatocarcinogenicity focusing on DNA damage in mice". Toxicological Sciences. 69 (2): 317–321. doi: 10.1093/toxsci/69.2.317 . PMID   12377980.
  40. Thomas A, Tocher J, Edwards DI (May 1990). "Electrochemical characteristics of five quinolone drugs and their effect on DNA damage and repair in Escherichia coli". The Journal of Antimicrobial Chemotherapy. 25 (5): 733–744. doi:10.1093/jac/25.5.733. PMID   2165050.
  41. "Fluoroquinolones and Quinolones". The American Academy of Optometry (British Chapter). Retrieved 29 January 2009.
  42. Al-Soud YA, Al-Masoudi NA (2003). "A new class of dihaloquinolones bearing N'-aldehydoglycosylhydrazides, mercapto-1,2,4-triazole, oxadiazoline and a-amino ester precursors: synthesis and antimicrobial activity". Journal of the Brazilian Chemical Society. 14 (5): 790–796. doi: 10.1590/S0103-50532003000500014 .
  43. Daudon M, Protat MF, Réveillaud RJ (1983). "[Detection and diagnosis of drug induced lithiasis]". Annales de Biologie Clinique (in French). 41 (4): 239–249. PMID   6139048.
  44. Rincé C, Daudon M, Moesch C, Rincé M, Leroux-Robert C (May 1987). "Identification of flumequine in a urinary calculus". Journal of Clinical Chemistry and Clinical Biochemistry. 25 (5): 313–314. PMID   3612030.
  45. Reveillaud RJ, Daudon M (October 1983). "[Drug-induced urinary lithiasis]". Presse Médicale (in French). 12 (38): 2389–2392. PMID   6138768.
  46. Arboit F, Bessot JC, DeBlay F, Dietemann A, Charpentier C, Pauli G (January 1997). "Eight cases of quinolone allergy". Revue Française d'Allergologie et d'Immunologie Clinique. 37 (1): 15–19. doi:10.1016/S0335-7457(97)80204-3.
  47. Adverse Reaction Newsletter 1996:1 Archived 2012-02-19 at the Wayback Machine WHO collaborating centre for international drug monitoring
  48. Christ W (October 1990). "Central nervous system toxicity of quinolones: human and animal findings". The Journal of Antimicrobial Chemotherapy. 26 (Suppl B): 219–225. doi:10.1093/jac/26.suppl_b.219. PMID   2124211.
  49. Defoin JF, Debonne T, Rambourg MO, Seraphin J, Buffet M, Jaussaud M, et al. (1990). "[Acute psychiatric syndrome and quinolones]". Journal de Toxicologie Clinique et Expérimentale (in French). 10 (7–8): 469–472. PMID   2135062.
  50. Rampa S, Caroli F (1991). "[Neuropsychiatric manifestations and quinolones. Apropos of a case]". L'Encephale (in French). 17 (6): 511–514. PMID   1666873.
  51. Vermeersch G, Filali A, Marko J, Catteau JP, Couture A (1990). "[Photophysical evaluation of photosensitization by various quinolones]". Journal de Pharmacie de Belgique (in French). 45 (5): 299–305. PMID   1964964.
  52. Revuz J, Pouget F (1983). "[Photo-onycholysis caused by Apurone]". Annales de Dermatologie et de Venereologie (in French). 110 (9): 765. PMID   6660786.
  53. Lacarelle B, Blin O, Audebert C, Auquier P, Karsenty H, Horriere F, Durand A (1994). "The quinolone, flumequine, has no effect on theophylline pharmacokinetics". European Journal of Clinical Pharmacology. 46 (5): 477–478. doi:10.1007/bf00191915. PMID   7957547. S2CID   97621.
  54. "Flumequine(antiniotic antimicrobial agents) Manufacturers & Suppliers". 88chem.com. Retrieved 2010-04-04.
  55. Francis PG, Wells RJ. "Flumequine". Pymble, Australia: Australian Government Analytical Laboratories.