Sparfloxacin

Last updated
Sparfloxacin
Sparfloxacin.svg
Sparfloxacin-from-xtal-3D-bs-17.png
Clinical data
Pronunciationspar FLOX a sin
Trade names Spacin, Zagam, others
AHFS/Drugs.com Micromedex Detailed Consumer Information
MedlinePlus a600002
Routes of
administration
By mouth
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 92%
Protein binding 45%
Metabolism Hepatic glucuronidation
Cytochrome P450 system not involved
Elimination half-life 16 to 30 hours
Excretion Fecal (50%) and renal (50%)
Identifiers
  • 5-Amino-1-cyclopropyl-7-[(3R,5S)3,5-dimethylpiperazin-1-yl]-6,8-difluoro-4-oxo-quinoline-3-carboxylic acid
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.157.238 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C19H22F2N4O3
Molar mass 392.407 g·mol−1
3D model (JSmol)
Melting point 266 to 269 °C (511 to 516 °F) (dec.)
  • C[C@@H]1CN(C[C@@H](N1)C)c2c(c(c3c(c2F)n(cc(c3=O)C(=O)O)C4CC4)N)F
  • InChI=1S/C19H22F2N4O3/c1-8-5-24(6-9(2)23-8)17-13(20)15(22)12-16(14(17)21)25(10-3-4-10)7-11(18(12)26)19(27)28/h7-10,23H,3-6,22H2,1-2H3,(H,27,28)/t8-,9+ Yes check.svgY
  • Key:DZZWHBIBMUVIIW-DTORHVGOSA-N Yes check.svgY
   (verify)

Sparfloxacin is a fluoroquinolone antibiotic used in the treatment of bacterial infections. It has a controversial safety profile. [1]

Contents

It was patented in 1985 and approved for medical use in 1993. [2] Zagam is no longer available in the United States.

Medical uses

The compound is indicated for treating community-acquired lower respiratory tract infections (acute sinusitis, exacerbations of chronic bronchitis caused by susceptible bacteria, community-acquired pneumonia). [3] [4] [5] [6]

Adverse reactions

Pharmacological properties

Sparfloxacin is about 37-45% bound to proteins in the blood. [11] [12]

Shimada et al. ( 1993) has summarized many of the studies published in Japanese regarding the tissue distribution of sparfloxacin. (high concentrations are achieved in sputum, pleural fluid, skin, lung, prostate, gynecological tissues, breast milk and otolaryngological tissues. *Salivary concentrations are 66 to 70% of plasma levels, while CSF penetration appears to be somewhat limited with CSF:plasma concentration ratios of only 0.25 to 0.35.

In rabbits, sparfloxacin achieves very good penetration into the ocular vitreous (54%), cornea (76%) and lens (36%). [17]

Mechanism of action

Sparfloxacin, like other quinolones and fluoroquinolones, are bactericidal drugs, actively killing bacteria. Quinolones inhibit the bacterial DNA gyrase or the topoisomerase IV enzyme, thereby inhibiting DNA replication and transcription. Quinolones can enter cells easily and therefore are often used to treat intracellular pathogens such as Legionella pneumophila and Mycoplasma pneumoniae. For many gram-negative bacteria DNA gyrase is the target, whereas topoisomerase IV is the target for many gram-positive bacteria. Eukaryotic cells do not contain DNA gyrase or topoisomerase IV.

See also

Related Research Articles

<span class="mw-page-title-main">Ciprofloxacin</span> Fluoroquinolone antibiotic

Ciprofloxacin is a fluoroquinolone antibiotic used to treat a number of bacterial infections. This includes bone and joint infections, intra-abdominal infections, certain types of infectious diarrhea, respiratory tract infections, skin infections, typhoid fever, and urinary tract infections, among others. For some infections it is used in addition to other antibiotics. It can be taken by mouth, as eye drops, as ear drops, or intravenously.

<span class="mw-page-title-main">Levofloxacin</span> Antibiotic

Levofloxacin, sold under the brand name Levaquin among others, is a broad-spectrum antibiotic of the fluoroquinolone drug class. It is the left-handed isomer of the medication ofloxacin. It is used to treat a number of bacterial infections including acute bacterial sinusitis, pneumonia, H. pylori, urinary tract infections, Legionnaires' disease, chronic bacterial prostatitis, and some types of gastroenteritis. Along with other antibiotics it may be used to treat tuberculosis, meningitis, or pelvic inflammatory disease. It is available by mouth, intravenously, and in eye drop form.

<span class="mw-page-title-main">Nitrofurantoin</span> Antibacterial drug

Nitrofurantoin, sold under the brand name Macrobid among others, is an antibacterial medication of the nitrofuran class used to treat urinary tract infections (UTIs), although it is not as effective for kidney infections. It is taken by mouth.

<span class="mw-page-title-main">Ofloxacin</span> Antibiotic to treat bacterial infections

Ofloxacin is a quinolone antibiotic useful for the treatment of a number of bacterial infections. When taken by mouth or injection into a vein, these include pneumonia, cellulitis, urinary tract infections, prostatitis, plague, and certain types of infectious diarrhea. Other uses, along with other medications, include treating multidrug resistant tuberculosis. An eye drop may be used for a superficial bacterial infection of the eye and an ear drop may be used for otitis media when a hole in the ear drum is present.

<span class="mw-page-title-main">Piperacillin</span> Antibiotic medication

Piperacillin is a broad-spectrum β-lactam antibiotic of the ureidopenicillin class. The chemical structure of piperacillin and other ureidopenicillins incorporates a polar side chain that enhances penetration into Gram-negative bacteria and reduces susceptibility to cleavage by Gram-negative beta lactamase enzymes. These properties confer activity against the important hospital pathogen Pseudomonas aeruginosa. Thus piperacillin is sometimes referred to as an "anti-pseudomonal penicillin".

<span class="mw-page-title-main">Norfloxacin</span> Chemical compound, antibiotic

Norfloxacin, sold under the brand name Noroxin among others, is an antibiotic that belongs to the class of fluoroquinolone antibiotics. It is used to treat urinary tract infections, gynecological infections, inflammation of the prostate gland, gonorrhea and bladder infection. Eye drops were approved for use in children older than one year of age.

<span class="mw-page-title-main">Moxifloxacin</span> Antibiotic

Moxifloxacin is an antibiotic, used to treat bacterial infections, including pneumonia, conjunctivitis, endocarditis, tuberculosis, and sinusitis. It can be given by mouth, by injection into a vein, and as an eye drop.

<span class="mw-page-title-main">Enoxacin</span> Chemical compound

Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Insomnia is a common adverse effect. It is no longer available in the United States.

<span class="mw-page-title-main">Grepafloxacin</span> Chemical compound

Grepafloxacin was an oral broad-spectrum fluoroquinolone antibacterial agent used to treat bacterial infections. Grepafloxacin was withdrawn worldwide from markets in 1999, due to the drug's potential to cause a potentially fatal cardiac arrhythmia.

<span class="mw-page-title-main">Cinoxacin</span> Chemical compound

Cinoxacin is a quinolone antibiotic that has been discontinued in the U.K. as well the United States, both as a branded drug or a generic. The marketing authorization of cinoxacin has been suspended throughout the EU.

<span class="mw-page-title-main">Temafloxacin</span> Chemical compound, antibiotic drug

Temafloxacin is a fluoroquinolone antibiotic drug which was withdrawn from sale in the United States shortly after its approval in 1992 because of serious adverse effects resulting in three deaths. It is not marketed in Europe.

<span class="mw-page-title-main">Cefditoren</span> Chemical to treat skin infections

Cefditoren, also known as cefditoren pivoxil is an antibiotic used to treat infections caused by Gram-positive and Gram-negative bacteria that are resistant to other antibiotics. It is mainly used for treatment of community acquired pneumonia. It is taken by mouth and is in the cephalosporin family of antibiotics, which is part of the broader beta-lactam group of antibiotics.

<span class="mw-page-title-main">Fleroxacin</span> Chemical compound

Fleroxacin is a quinolone antibiotic. It is sold under the brand names Quinodis and Megalocin.

<span class="mw-page-title-main">Flumequine</span> Chemical compound

Flumequine is a synthetic fluoroquinolone antibiotic used to treat bacterial infections. It is a first-generation fluoroquinolone antibacterial that has been removed from clinical use and is no longer being marketed. The marketing authorization of flumequine has been suspended throughout the EU. It kills bacteria by interfering with the enzymes that cause DNA to unwind and duplicate. Flumequine was used in veterinarian medicine for the treatment of enteric infections, as well as to treat cattle, swine, chickens, and fish, but only in a limited number of countries. It was occasionally used in France to treat urinary tract infections under the trade name Apurone. However this was a limited indication because only minimal serum levels were achieved.

<span class="mw-page-title-main">Prulifloxacin</span> Chemical compound

Prulifloxacin is an older synthetic antibiotic of the fluoroquinolone class undergoing clinical trials prior to a possible NDA submission to the U.S. Food and Drug Administration (FDA). It is a prodrug which is metabolized in the body to the active compound ulifloxacin. It was developed over two decades ago by Nippon Shinyaku Co. and was patented in Japan in 1987 and in the United States in 1989.

<span class="mw-page-title-main">Chronic bacterial prostatitis</span> Bacterial infection of the prostate gland

Chronic bacterial prostatitis (CBP) is a bacterial infection of the prostate gland and a form of prostatitis. It should be distinguished from other forms of prostatitis such as acute bacterial prostatitis (ABP) and chronic pelvic pain syndrome (CPPS).

<span class="mw-page-title-main">Difloxacin</span> Chemical compound

Difloxacin (INN), marketed under the trade name Dicural, is a second-generation, synthetic fluoroquinolone antibiotic used in veterinary medicine. It has broad-spectrum, concentration dependent, bactericidal activity; however, its efficacy is not as good as enrofloxacin or pradofloxacin.

<span class="mw-page-title-main">Clinafloxacin</span> Chemical compound

Clinafloxacin is an investigational fluoroquinolone antibiotic. Despite its promising antibiotic activity, the clinical development of clinafloxacin has been hampered by its risk for inducing serious side effects.

<span class="mw-page-title-main">Solithromycin</span> Chemical compound

Solithromycin is a ketolide antibiotic undergoing clinical development for the treatment of community-acquired pneumonia and other infections.

<span class="mw-page-title-main">Quinolone antibiotic</span> Class of antibacterial drugs, subgroup of quinolones

Quinolone antibiotics constitute a large group of broad-spectrum bacteriocidals that share a bicyclic core structure related to the substance 4-quinolone. They are used in human and veterinary medicine to treat bacterial infections, as well as in animal husbandry, specifically poultry production.

References

  1. Psaty BM (December 2008). "Clinical trial design and selected drug safety issues for antibiotics used to treat community-acquired pneumonia". Clinical Infectious Diseases. 47 (Suppl 3): S176–S179. doi:10.1086/591400. PMC   2587028 . PMID   18986285.
  2. Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 501. ISBN   9783527607495.
  3. 1 2 Rubinstein E (May 1996). "Safety profile of sparfloxacin in the treatment of respiratory tract infections". The Journal of Antimicrobial Chemotherapy. 37 (Suppl A): 145–160. doi: 10.1093/jac/37.suppl_a.145 . PMID   8737134.
  4. Goa KL, Bryson HM, Markham A (April 1997). "Sparfloxacin. A review of its antibacterial activity, pharmacokinetic properties, clinical efficacy and tolerability in lower respiratory tract infections". Drugs. 53 (4): 700–725. doi:10.2165/00003495-199753040-00010. PMID   9098667. S2CID   249883805.
  5. Stein GE, Havlichek DH (1997). "Sparfloxacin: potential clinical and economic impact in the treatment of respiratory infections". Pharmacotherapy. 17 (6): 1139–1147. doi:10.1002/j.1875-9114.1997.tb03079.x. PMID   9399598. S2CID   2652070.
  6. Zhanel GG, Ennis K, Vercaigne L, Walkty A, Gin AS, Embil J, et al. (2002). "A critical review of the fluoroquinolones: focus on respiratory infections". Drugs. 62 (1): 13–59. doi:10.2165/00003495-200262010-00002. PMID   11790155. S2CID   46961910.
  7. Bowie et al., 1989[ clarification needed ]
  8. Davey, 1989[ clarification needed ]
  9. Wolfson JS, Hooper DC (December 1991). "Overview of fluoroquinolone safety". The American Journal of Medicine. 91 (6A): 153S–161S. doi:10.1016/0002-9343(91)90330-z. PMID   1767803.
  10. Rubinstein E (May 1996). "Safety profile of sparfloxacin in the treatment of respiratory tract infections". The Journal of Antimicrobial Chemotherapy. 37 Suppl A: 145–160. doi: 10.1093/jac/37.suppl_a.145 . PMID   8737134.
  11. Shimada J, Nogita T, Ishibashi Y (November 1993). "Clinical pharmacokinetics of sparfloxacin". Clinical Pharmacokinetics. 25 (5): 358–369. doi:10.2165/00003088-199325050-00002. PMID   8287631. S2CID   30055898.
  12. Montay G (May 1996). "Pharmacokinetics of sparfloxacin in healthy volunteers and patients: a review". The Journal of Antimicrobial Chemotherapy. 37 Suppl A: 27–39. doi: 10.1093/jac/37.suppl_a.27 . PMID   8737123.
  13. Johnson JH, Cooper MA, Andrews JM, Wise R (November 1992). "Pharmacokinetics and inflammatory fluid penetration of sparfloxacin". Antimicrobial Agents and Chemotherapy. 36 (11): 2444–2446. doi:10.1128/aac.36.11.2444. PMC   284350 . PMID   1336947.
  14. Nogita T, Ishibashi Y (August 1991). "The penetration of sparfloxacin into human plasma and skin tissues". The Journal of Antimicrobial Chemotherapy. 28 (2): 313–314. doi:10.1093/jac/28.2.313. PMID   1663927.
  15. García I, Pascual A, Guzman MC, Perea EJ (May 1992). "Uptake and intracellular activity of sparfloxacin in human polymorphonuclear leukocytes and tissue culture cells". Antimicrobial Agents and Chemotherapy. 36 (5): 1053–1056. doi:10.1128/aac.36.5.1053. PMC   188834 . PMID   1324636.
  16. Wise R, Honeybourne D (May 1996). "A review of the penetration of sparfloxacin into the lower respiratory tract and sinuses". The Journal of Antimicrobial Chemotherapy. 37 Suppl A: 57–63. doi:10.1093/jac/37.suppl_a.57. PMID   8737125.
  17. Cochereau-Massin I, Bauchet J, Marrakchi-Benjaafar S, Saleh-Mghir A, Faurisson F, Vallois JM, et al. (April 1993). "Efficacy and ocular penetration of sparfloxacin in experimental streptococcal endophthalmitis". Antimicrobial Agents and Chemotherapy. 37 (4): 633–636. doi:10.1128/aac.37.4.633. PMC   187726 . PMID   8388193.