Grepafloxacin

Last updated

Grepafloxacin
Grepafloxacin.svg
Clinical data
AHFS/Drugs.com Multum Consumer Information
ATC code
Pharmacokinetic data
Protein binding 50%
Identifiers
  • (RS)-1-Cyclopropyl-6-fluoro-5-methyl-7-(3-methylpiperazin-1-yl)-4-oxo-quinoline-3-carboxylic acid
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.159.692 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C19H22FN3O3
Molar mass 359.401 g·mol−1
3D model (JSmol)
Chirality Racemic mixture
  • O=C(O)\C2=C\N(c1cc(c(F)c(c1C2=O)C)N3CC(NCC3)C)C4CC4
  • InChI=1S/C19H22FN3O3/c1-10-8-22(6-5-21-10)15-7-14-16(11(2)17(15)20)18(24)13(19(25)26)9-23(14)12-3-4-12/h7,9-10,12,21H,3-6,8H2,1-2H3,(H,25,26) Yes check.svgY
  • Key:AIJTTZAVMXIJGM-UHFFFAOYSA-N Yes check.svgY
   (verify)

Grepafloxacin (trade name Raxar, Glaxo Wellcome) was an oral broad-spectrum fluoroquinolone antibacterial agent used to treat bacterial infections. Grepafloxacin was withdrawn worldwide from markets in 1999, [1] [2] due to the drug's potential to cause a potentially fatal cardiac arrhythmia. [3]

Contents

Clinical uses

Grepafloxacin was used for treating exacerbations of chronic bronchitis caused by susceptible bacteria (e.g. Haemophilus influenzae , Streptococcus pneumoniae , Moraxella catarrhalis ), [4] [5] [6] community-acquired pneumonia (including those, in addition to the above germs, caused by Mycoplasma pneumoniae ) [7] [8] gonorrhea and non-gonococcal urethritis and cervicitis (for example caused by Chlamydia trachomatis or Ureaplasma urealyticum ). [9] [10]

Synthesis

The preparation of quinolones bearing a substituent at position 5 is complicated by the greater electrophilic character of the 8 position. One scheme for resolving the problem consists in blocking access to position 8 by first adding a readily removable group to that center.

Grepafloxacin synthesis: Grepafloxacin synthesis.svg
Grepafloxacin synthesis:

The scheme starts with the conversion of the carboxylic acid in (1) to its dimethyloxazoline derivative (3) by reaction with the aminomethyl propanol (2). Lithium diisopropylamide (LDA) then removes a proton from the 8 position; treatment of that anion with trimethylsilyl iodide leads to the silylated intermediate (4). A second round of LDA then generates a carbanion at the only open position; reaction with methyl iodide leads to the corresponding 5 methyl derivative (5). Treatment of that product with cesium fluoride breaks the carbon–silicon bond, removing the silyl group; aqueous acid then hydrolyzes the oxazoline to afford the free acid (6). This last intermediate is then taken on to the quinolone (9) [13] by essentially the same scheme as that used to prepare difloxacin, with the difference that the chain elongation is by means of Grignard reagent of ethyl bromoacetate. Treatment of (9) with 2-methylpiperazine proceeds by reaction at the less hindered of the two amino groups; saponification then affords grepafloxacin (10).

Stereochemistry

Grepafloxacin contains a stereocenter and consists of two enantiomers. This is a racemate, ie a 1: 1 mixture of (R)- and the (S)-forms:

Enantiomers of grepafloxacin
(R)-Grepafloxacin Structural Formula V1.svg
(R)-grepafloxacin
CAS number: 146761-68-4
(S)-Grepafloxacin Structural Formula V1.svg
(S)-grepafloxacin
CAS number: 146761-69-5

See also

Related Research Articles

<span class="mw-page-title-main">Ciprofloxacin</span> Fluoroquinolone antibiotic

Ciprofloxacin is a fluoroquinolone antibiotic used to treat a number of bacterial infections. This includes bone and joint infections, intra-abdominal infections, certain types of infectious diarrhea, respiratory tract infections, skin infections, typhoid fever, and urinary tract infections, among others. For some infections it is used in addition to other antibiotics. It can be taken by mouth, as eye drops, as ear drops, or intravenously.

Nongonococcal urethritis (NGU) is inflammation of the urethra that is not caused by gonorrheal infection.

<span class="mw-page-title-main">Levofloxacin</span> Antibiotic

Levofloxacin, sold under the brand name Levaquin among others, is a broad-spectrum antibiotic of the fluoroquinolone drug class. It is the left-handed isomer of the medication ofloxacin. It is used to treat a number of bacterial infections including acute bacterial sinusitis, pneumonia, H. pylori, urinary tract infections, Legionnaires' disease, chronic bacterial prostatitis, and some types of gastroenteritis. Along with other antibiotics it may be used to treat tuberculosis, meningitis, or pelvic inflammatory disease. It is available by mouth, intravenously, and in eye drop form.

<span class="mw-page-title-main">Nitrofurantoin</span> Antibacterial drug

Nitrofurantoin, sold under the brand name Macrobid among others, is an antibacterial medication of the nitrofuran class used to treat urinary tract infections (UTIs), although it is not as effective for kidney infections. It is taken by mouth.

<i>Ureaplasma urealyticum</i> Species of bacterium

Ureaplasma urealyticum is a bacterium belonging to the genus Ureaplasma and the family Mycoplasmataceae in the order Mycoplasmatales. This family consists of the genera Mycoplasma and Ureaplasma. Its type strain is T960. There are two known biovars of this species; T960 and 27. These strains of bacteria are commonly found as commensals in the urogenital tracts of human beings, but overgrowth can lead to infections that cause the patient discomfort. Unlike most bacteria, Ureaplasma urealyticum lacks a cell wall making it unique in physiology and medical treatment.

<span class="mw-page-title-main">Fusidic acid</span> Antibiotic

Fusidic acid, sold under the brand name Fucidin among others, is a steroid antibiotic that is often used topically in creams or ointments and eyedrops but may also be given systemically as tablets or injections. As of October 2008, the global problem of advancing antimicrobial resistance has led to a renewed interest in its use.

<span class="mw-page-title-main">Ofloxacin</span> Antibiotic to treat bacterial infections

Ofloxacin is a quinolone antibiotic useful for the treatment of a number of bacterial infections. When taken by mouth or injection into a vein, these include pneumonia, cellulitis, urinary tract infections, prostatitis, plague, and certain types of infectious diarrhea. Other uses, along with other medications, include treating multidrug resistant tuberculosis. An eye drop may be used for a superficial bacterial infection of the eye and an ear drop may be used for otitis media when a hole in the ear drum is present.

<span class="mw-page-title-main">Mycoplasmataceae</span> Family of bacteria

Mycoplasmataceae is a family of bacteria in the order Mycoplasmatales. This family consists of the genera Mycoplasma and Ureaplasma.

<span class="mw-page-title-main">Nalidixic acid</span> First of the synthetic quinolone antibiotics

Nalidixic acid is the first of the synthetic quinolone antibiotics.

<span class="mw-page-title-main">Norfloxacin</span> Chemical compound, antibiotic

Norfloxacin, sold under the brand name Noroxin among others, is an antibiotic that belongs to the class of fluoroquinolone antibiotics. It is used to treat urinary tract infections, gynecological infections, inflammation of the prostate gland, gonorrhea and bladder infection. Eye drops were approved for use in children older than one year of age.

<span class="mw-page-title-main">Enoxacin</span> Chemical compound

Enoxacin is an oral broad-spectrum fluoroquinolone antibacterial agent used in the treatment of urinary tract infections and gonorrhea. Insomnia is a common adverse effect. It is no longer available in the United States.

<span class="mw-page-title-main">Gemifloxacin</span> Medication to treat chronic bronchitis

Gemifloxacin mesylate, sold under the brand name Factive among others, is a broad-spectrum quinolone antibacterial agent used in the treatment of acute bacterial exacerbation of chronic bronchitis and mild-to-moderate pneumonia. It is taken by mouth. Vansen Pharma Inc. licensed the active ingredient from LG Life Sciences of Korea.

<span class="mw-page-title-main">Sparfloxacin</span> Chemical to treat bacterial infections

Sparfloxacin is a fluoroquinolone antibiotic used in the treatment of bacterial infections. It has a controversial safety profile.

<span class="mw-page-title-main">Temafloxacin</span> Chemical compound, antibiotic drug

Temafloxacin is a fluoroquinolone antibiotic drug which was withdrawn from sale in the United States shortly after its approval in 1992 because of serious adverse effects resulting in three deaths. It is not marketed in Europe.

<span class="mw-page-title-main">Fleroxacin</span> Chemical compound

Fleroxacin is a quinolone antibiotic. It is sold under the brand names Quinodis and Megalocin.

<span class="mw-page-title-main">Flumequine</span> Chemical compound

Flumequine is a synthetic fluoroquinolone antibiotic used to treat bacterial infections. It is a first-generation fluoroquinolone antibacterial that has been removed from clinical use and is no longer being marketed. The marketing authorization of flumequine has been suspended throughout the EU. It kills bacteria by interfering with the enzymes that cause DNA to unwind and duplicate. Flumequine was used in veterinarian medicine for the treatment of enteric infections, as well as to treat cattle, swine, chickens, and fish, but only in a limited number of countries. It was occasionally used in France to treat urinary tract infections under the trade name Apurone. However this was a limited indication because only minimal serum levels were achieved.

<span class="mw-page-title-main">Mecillinam</span> Pharmaceutical drug

Mecillinam (INN) or amdinocillin (USAN) is an extended-spectrum penicillin antibiotic of the amidinopenicillin class that binds specifically to penicillin binding protein 2 (PBP2), and is only considered to be active against Gram-negative bacteria. It is used primarily in the treatment of urinary tract infections, and has also been used to treat typhoid and paratyphoid fever. Because mecillinam has very low oral bioavailability, an orally active prodrug was developed: pivmecillinam.

<span class="mw-page-title-main">Acute exacerbation of chronic obstructive pulmonary disease</span> Medical condition

An acute exacerbation of chronic obstructive pulmonary disease, or acute exacerbations of chronic bronchitis (AECB), is a sudden worsening of chronic obstructive pulmonary disease (COPD) symptoms including shortness of breath, quantity and color of phlegm that typically lasts for several days.

Ureaplasma parvum is a species of Ureaplasma, a genus of bacteria belonging to the family Mycoplasmataceae.

<span class="mw-page-title-main">Quinolone antibiotic</span> Class of antibacterial drugs, subgroup of quinolones

Quinolone antibiotics constitute a large group of broad-spectrum bacteriocidals that share a bicyclic core structure related to the substance 4-quinolone. They are used in human and veterinary medicine to treat bacterial infections, as well as in animal husbandry, specifically poultry production.

References

  1. "Glaxo Wellcome voluntary withdrawn Raxar (Grepafloxacin)" (PDF). Food and Drug Administration . Retrieved 2014-10-12.
  2. "Withdrawal of Product: RAXAR (grepafloxacin HCl) 600 mg Tablets, 400 mg Tablets, and 200 mg Tablets". U.S. Food and Drug Administration. Retrieved 2014-10-12.
  3. Sprandel KA, Rodvold KA (2003). "Safety and tolerability of fluoroquinolones". Clinical Cornerstone. Suppl 3: S29–S36. doi:10.1016/s1098-3597(03)90027-5. PMID   14992418.
  4. Chodosh S, Lakshminarayan S, Swarz H, Breisch S (January 1998). "Efficacy and safety of a 10-day course of 400 or 600 milligrams of grepafloxacin once daily for treatment of acute bacterial exacerbations of chronic bronchitis: comparison with a 10-day course of 500 milligrams of ciprofloxacin twice daily". Antimicrobial Agents and Chemotherapy. 42 (1): 114–120. doi:10.1128/AAC.42.1.114. PMC   105465 . PMID   9449270.
  5. Langan CE, Cranfield R, Breisch S, Pettit R (December 1997). "Randomized, double-blind study of grepafloxacin versus amoxycillin in patients with acute bacterial exacerbations of chronic bronchitis". The Journal of Antimicrobial Chemotherapy. 40 Suppl A: 63–72. doi: 10.1093/jac/40.suppl_1.63 . PMID   9484875.
  6. Langan CE, Zuck P, Vogel F, McIvor A, Peirzchala W, Smakal M, et al. (October 1999). "Randomized, double-blind study of short-course (5 day) grepafloxacin versus 10 day clarithromycin in patients with acute bacterial exacerbations of chronic bronchitis". The Journal of Antimicrobial Chemotherapy. 44 (4): 515–523. doi: 10.1093/jac/44.4.515 . PMID   10588313.
  7. O'Doherty B, Dutchman DA, Pettit R, Maroli A (December 1997). "Randomized, double-blind, comparative study of grepafloxacin and amoxycillin in the treatment of patients with community-acquired pneumonia". The Journal of Antimicrobial Chemotherapy. 40 Suppl A: 73–81. doi:10.1093/jac/40.suppl_1.73. PMID   9484876.
  8. Felmingham D (March 2000). "Respiratory pathogens: assessing resistance patterns in Europe and the potential role of grepafloxacin as treatment of patients with infections caused by these organisms". The Journal of Antimicrobial Chemotherapy. 45 (90002): 1–8. doi:10.1093/jac/45.suppl_2.1. PMID   10719006.
  9. Ridgway GL, Salman H, Robbins MJ, Dencer C, Felmingham D (December 1997). "The in-vitro activity of grepafloxacin against Chlamydia spp., Mycoplasma spp., Ureaplasma urealyticum and Legionella spp". The Journal of Antimicrobial Chemotherapy. 40 Suppl A: 31–34. doi: 10.1093/jac/40.suppl_1.31 . PMID   9484871.
  10. McCormack WM, Martin DH, Hook EW, Jones RB (1998). "Daily oral grepafloxacin vs. twice daily oral doxycycline in the treatment of Chlamydia trachomatis endocervical infection". Infectious Diseases in Obstetrics and Gynecology. 6 (3): 109–115. doi: 10.1155/S1064744998000210 . PMC   1784789 . PMID   9785106.
  11. Hagen SE, Domagala JM, Heifetz CL, Johnson J (March 1991). "Synthesis and biological activity of 5-alkyl-1,7,8-trisubstituted-6-fluoroquinoline-3-carboxylic acids". Journal of Medicinal Chemistry. 34 (3): 1155–1161. doi:10.1021/jm00107a040. PMID   2002456.
  12. WO 8906649 ; eidem, U.S. patent 4,920,120 (1989, 1990 both to Warner-Lambert).
  13. Hagen SE, Domagala JM (1990). "Synthesis of 5-methyl-4-oxo-quinolinecarboxylic acids". Journal of Heterocyclic Chemistry. 27 (6): 1609–1616. doi:10.1002/jhet.5570270616.