Gonepteryx rhamni

Last updated

Common brimstone
Common brimstone butterfly (Gonepteryx rhamni) male in flight.jpg
Male in flight, Dry Sandford Pit, Oxfordshire
Common brimstone butterfly (Gonepteryx rhamni) male.jpg
Female at Parsonage Moor, Oxfordshire
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Pieridae
Genus: Gonepteryx
Species:
G. rhamni
Binomial name
Gonepteryx rhamni
Subspecies
  • G. r. gravesi
  • G. r. kurdistana
  • G. r. meridionalis
  • G. r. miljanowskii
  • G. r. rhamni
  • G. r. tianshanica
  • G. r. transiens
Synonyms

Gonepteryx rhamni, commonly named the common brimstone, is a butterfly of the family Pieridae. It lives throughout the Palearctic zone and is commonly found across Europe, Asia, and North Africa. [2] Across much of its range, it is the only species of its genus, and is therefore simply known locally as the brimstone. Its wing span size is 60–74 mm (2.4–2.9 in). It should not be confused with the brimstone moth Opisthograptis luteolata.

Contents

The brimstone relies on two species of buckthorn plants as host plants for its larvae; this influences its geographic range and distribution, as these plants are commonly found in wetlands. [3] The adult brimstone travels to woodland areas to spend seven months overwintering. In spring when their host plants have developed, they return to the wetlands to breed and lay eggs. [4] Both the larval and adult forms of the common brimstone have protective coloration and behaviour that decreases their chances of being recognised and subsequently preyed upon. [5]

The adult common brimstone has sexual dimorphism in its wing coloration: males have yellow wings and iridescence while females have greenish-white wings and are not iridescent. [6] [7] This iridescence is affected by environmental factors. [2]

Taxonomy

It was first described and published in Linnaeus's book, the 10th edition of Systema Naturae in 1758. [8]

Brimstone is an old name for sulphur, the colour which matches the colour of the male's wings.

Distribution and habitat

The common brimstone can be commonly found throughout the Palearctic. Individuals have been seen from western Europe to east Asia. The high mobility of this butterfly allows it to search widely for new host plant locations and expand its range. [2] While the geographic distribution of the adult is larger than that of its host plant, its range is nevertheless limited by the presence of host plants due to the needs of its larval stage. [3]

The common brimstone uses various environments for different stages of its life cycle. The butterfly inhabits wetlands during mating and breeding season, as they provide ideal areas for oviposition due to an abundance of host plants like the alder buckthorn. [4] The common brimstone prefers laying eggs on younger host plants with late bud-bursts that are isolated from other plants in the area and exposed to both open space and sun. [9] During the winter, adult brimstones travel to woodlands to hibernate, as they provide ideal overwintering sites with shelters such as evergreen foliage and holly. [10] [4] The common brimstone has an appearance that is highly similar to the leaves of these plants, so during hibernation it can remain hidden. [11] In other seasons, habitat selection is also affected by the abundance of nectar as a food source for adult brimstones. [12]

Food resources

The common buckthorn, one of the larval host plants. Rhamnus cathartica fur Wikipedia.jpg
The common buckthorn, one of the larval host plants.

Caterpillar

Larval brimstones appear to feed on only two plant sources: the alder buckthorn (Frangula alnus) and the common buckthorn (Rhamnus carthartica). [13] This influences the distribution of the adult brimstone, as the presence of these two buckthorn species is necessary for the survival of their offspring. [3]

Adult

Unlike their larval forms, which are specialised for particular host plants, adult brimstones are not specialised nectar feeders. The common brimstone heavily feeds on the nectar of several flowering species including knapweed ( Centaurea jacea ) and scabious ( Knautia arvensis and Succisa pratensis ). [12] However, brimstones have also been observed feeding on the nectar of coltsfoot ( Tussilago farfara ) in April and May and have been recorded gathering nectar from many other species of flowers. [6] [14] Adult food plant availability is another factor that is important for habitat selection. [12]

Parental care

Oviposition

The common brimstone is univoltine, meaning that it lays one generation of eggs each year. There are several ideal characteristics of the particular host plants chosen for oviposition. Adult brimstones lay eggs on the underside of the leaves of the two species of host plants, where they are less conspicuous. [10] [15] The high mobility of G. rhamni enables the butterflies to find even the most isolated host plants in an area, which are more ideal for their offspring. [15] Eggs are more likely to be deposited on outlying plants, leading to reduced vulnerability as fewer predators are attracted to these plants. [9] Another factor is damage; undamaged plants indicate the absence of other eggs, as brimstone larvae leave holes in the leaves of the plants on which they feed. Since predators and parasites are attracted to damaged plants through chemical or visual signals, less damage leads to greater offspring survival since eggs are less likely to be detected. [9] Plants exposed to both sunlight and the open lead to reduced chances of predation and parasitism as well, and are more accessible to adult butterflies. [9] [15] Larvae can also benefit from decreased host plant defences; juvenile plants and plants with late bud-bursts produce fewer toxic defence chemicals, as resources are directed more towards plant growth. [9]

Life cycle

The common brimstone is one of the longest-living butterflies, with a life expectancy ranging from 10 months to a year. [10] [11] Due to its hibernation and life cycle, it has one generation per year. [10] Development from the laid egg to the emergence of the imago is approximately 50 days. [11] However, the adult brimstone spends a large portion of its life in an overwintering state. The brimstone is highly mobile, feeding and travelling to regions ideal for hibernation during the late summer and fall, and returning to regions ideal for mating and egg-laying during the spring. [10]

Egg

Adult common brimstones lay eggs singly on the underside of buckthorn leaves. [11] The eggs are around 1.3 mm tall, and are spindle-shaped in appearance. [11] [16] The eggs change colour over time, initially having a greenish-white colouration, then progressively darker shades of yellow, and finally brown before hatching. [9] [11]

Caterpillar

The larvae of the common brimstone undergo five instars, initially having a length of 1.7 mm in the first instar and reaching up to 34.9 mm in length when fully grown. [11] The caterpillars have a green colouration with white hairs and dark tubercules across its length. [16] When they first hatch, they move to the top side of the leaves and eat them, leaving characteristic hole patterns in their host plants. [15] During the day, they feed and then rest in the open, lying still on the midrib of leaves, where their colouration makes them difficult to distinguish. [15]

Pupa

Pupation occurs over approximately two weeks. [11] The pupae are 22.2-23.8 mm in length and have the appearance of a curled leaf, with pointed ends and bulges in the middle. [11] The pupae are secured to stems and leaves using silk; a cremastral hook attaches to a silk padding, and a length of silk secures the pupae around its middle. [11] The pupae have a primarily green colouration, but right before adult emergence for males, the wing areas turn yellow. [11]

Adult

Adults emerge during the summer, from June to August, and continue to feed until September. [14] The common brimstone hibernates for the next seven months of winter, remaining inactive until April, where they then emerge and proceed to reproduce and lay eggs. [10] [6] Adult brimstones are highly abundant for several months after their emergence from overwintering. [6] The common brimstone has sexual dichromism, with males having a sulphur yellow wing colouration and females having a greenish-white wing colouration. [6] Additionally, males have iridescent dorsal wings that change in colour and appearance under ultraviolet light, while females do not. [7] Both males and females have orange spots in the discoidal cell of each wing, pink head and antennae, and a thorax covered in white hair. [11]

Life cycle
Gonepteryx rhamni 090406.jpg
Mating pair (left: male; right: female)
Gonepteryx rhamni egg 1.jpg
Egg
Gonepteryx rhamni - caterpillar 01 (HS).jpg
Caterpillar on alder buckthorn
Gonepteryx rhamni - pupa 04 (HS).jpg
Pupa
Zitronenfalter Gonepteryx rhamni.jpg
Adult male
Common brimstone (Gonepteryx rhamni) female underside.JPG
Adult female

Migration

The common brimstone undergoes some regional migration between hibernation and breeding areas throughout the year, as seen in the different chemical composition of butterflies across varying seasons and regions. [10] In general, there is movement towards wetlands to reproduce. After the eggs hatch, develop, and pupate, newly hatched adult butterflies emerge and disperse locally into both woodlands and wetlands to overwinter. [4] Butterflies travel to the woodlands for overwintering, and no mating appears to occur within these habitats. Overwintering also occurs in the wetlands, where the host plant alder buckthorn is abundant. After emerging from overwintering, adult brimstones that were previously in the wetlands are joined by those that hibernated in woodlands, and the population breeds and lays eggs. [4]

The environmental conditions of a particular year also affect migration, as seen in the elevational migrations of the common brimstone. [14] Uphill migration is potentially influenced by habitat limitations, such as a lack of the forest cover that is required during overwintering. Brimstones travel to higher elevations for greater forest cover and reduced exposure to higher temperatures during their activities. [14] Downhill migration is influenced by the need for larval resources such as host plants during breeding seasons - the butterflies travel to lower elevations in search for regions containing these plants, with adults commonly returning to the areas where they had been bred due to their long lifespan. [14]

Enemies

Predators

Like most woodland Lepidoptera, G. rhamni is preyed upon by many species of birds and wasps. [9] Both larvae and adult brimstones fall victim to predation and use means such as protective coloration and mimicry to avoid this fate. [5] [16]

Parasites

The common brimstone has two recorded species of parasites: the braconids Cotesia gonopterygis and Cotesia risilis . [17] These two species of parasitoid wasps are completely specialised for G. rhamni, possibly due to the wide distribution of the butterfly and the host plants in its habitats. The broad presence of its host allows the wasps to be host-specific. [17] The wasps are primarily associated with the presence of the food plant Frangula alnus due to its association with their host. [17]

Protective colouration and behaviour

Larva lying alongside the midrib of a leaf Gonepteryx rhamni - caterpillar 09 (HS).jpg
Larva lying alongside the midrib of a leaf

Both the larval and adult common brimstone exhibit cryptic colouration, meaning they match the colour of their habitats. Larvae are so difficult to see due to this colouration that they can remain in the open undetected. [16] When not eating, the caterpillars remain still in a position alongside the midrib of leaves, making them even more difficult to spot. Adult brimstones are leaf-mimics, as they share similarities in shape, colour, and pattern to leaves. This allows them to blend in with their surroundings during vulnerable times like diapause (hibernation). [5] When picked up, the butterflies become rigid and hide their legs from view in order to decrease their chances of being recognised. [5]

Genetics of colour patterns

Pigmentation and structural coloration

Variation in coloration of Lepidoptera wings is caused by different structural and pigment components. These differences cause light to scatter in different ways, leading to the different colours. In the common brimstone, wing scales scatter light incoherently due to ovoid-shaped structures called beads that contain pigments. [18] Due to these pigments, the beads absorb short wavelength light and scatter longer wavelengths outside of the pigment absorption spectrum, such as light in the complementary wavelength range. [7]

Through chemical extraction and analysis, two possible pigments have been identified that may contribute to the common brimstone's wing coloration. [7] Xanthopterin is responsible for the sulphur yellow colour of the male wings since it absorbs in the violet range. [7] Leucopterin was extracted from the white wings of females. [7] The difference in wing pigmentation contributes to the distinct iridescence patterns of males and females. Iridescence occurs due to visualised changes in coloration from the scattering of ultraviolet light. [7] A male-only pattern of coloration due to this iridescence is seen exclusively under ultraviolet light, since females absorb light on the ultraviolet spectra. The presence of exclusively leucopterin in female wings explains the lack of iridescence in female common brimstones, since leucopterin absorbs only in the ultraviolet range. [7] Therefore, the wings do not reflect and consequently do not scatter any ultraviolet light like male wings do. [7]

In males, iridescence is indicated in that the wing pattern appears to visually change depending on the position of the ultraviolet light shone onto the wing. At some angles, a male pattern is seen, while at other angles, a female lack of pattern is seen. This is referred to as the "gynandromorphic effect". [19] This demonstrates that the pattern appears to be optical, rather than pigmental, as the effect is only seen at certain angles and distances of light and changes with positions. [19] If it were pigmental, these changes would not cause differences in iridescence.

The structural coloration of the male dorsal wings is affected by environmental factors. There is an increase in ultraviolet coloration coverage with increasing temperature, increasing precipitation, and decreasing latitude. [2] This has been possibly attributed to several factors, such as the greater abundance and quality of resources in areas with these environmental conditions. Other possibilities include a better ability to assimilate resources as an indication of male mate quality. Because ultraviolet coloration is energetically expensive to develop, it could signal high male quality. [2]

Mating

After the common brimstone emerges from hibernation, it travels towards habitats that contain larval host plants and mates. [4] The brimstone is primarily monandrous, as demonstrated by the presence of usually only a single spermatophore in females throughout the mating season. [20] Pairs are formed after the butterflies have engaged in a dalliance flight for a period of time. [11] When a pair settles to mate, they do not take flight during copulation and remain paired for a long time of up to forty-eight hours. [11]

Physiology

Vision

The common brimstone appears to have an innate preference for certain colours in nectar plants – red and blue inflorescences are common in heavily used nectar sources in some regions. [21] [12] G. rhamni also has a stronger reliance on visual indications such as colour compared with other butterfly species, which rely more on odour. [21]

Olfaction

The common brimstone has an antennal response to the floral scent compounds of nectar plants, where neural activity in antennal olfactory receptors occurs in the presence of certain compounds. [22] Research suggests that there are antennal olfactory receptors for phenylacetaldehyde and the terpene compounds oxoisophoroneoxide, oxoisophorone, and dihydrooxoisophorone, as these compounds elicited some of the strongest electrophysiological responses whether they were presented in natural or synthetic mixes of floral compounds. [22] Additionally, these two compounds are present in the largest quantities in the nectar plants utilised by the brimstone, indicating that scent detection could be important for detecting food sources. [22] This would contribute to more efficient foraging in adult butterflies, as odour could act as a cue for finding and distinguishing nectar plants, allowing more energy to be utilised for other activities such as reproduction. [22]

Diapause

Hibernating adult male Hibernating Gonepteryx rhamni male 01 (HS).jpg
Hibernating adult male

The adult common brimstone overwinters for seven months, remaining hidden and motionless throughout its hibernation. [6] [11] While both sexes have similar egg to adult development times, they differ in the times that they reach sexual maturity. The reproductive development of males begins just after pupal emergence, and continues during hibernation, which indicates that males may not be able to reproduce until after overwintering. [6] For females, eggs remain undeveloped as the butterflies overwinter, and no reproductive development occurs until after emergence from hibernation. [6]

The sexes also differ in times of emergence after overwintering. Emergence is correlated with temperature and hours of sunlight; a certain amount of both is necessary for the butterfly to emerge from hibernation and therefore influences when diapause ends. [23] Males emerge earlier than females, as they are more willing to fly in lower temperatures than females. [6] Since the common brimstone most closely follows monandrous mating patterns, males may emerge earlier to increase the number of mating chances and therefore reproductive success, as older males have had more time to develop and therefore have a greater advantage. [20] In contrast, females emerge late due to the late seasonal development of host plants such as the alder buckthorn, since these plants are necessary for egg-laying. Female emergence is correlated with host plant development. [6]

Conservation

As of 2010, G. rhamni does not appear to have a threatened conservation status according to IUCN standards. [1] However, the butterfly has experienced significant population and distribution reduction in areas such as the Netherlands, where its numbers have declined to the point that based on IUCN criterion, it has reached endangered species status. [24] The causes of this population decline are not fully determined, but there are several possible factors. Since the common brimstone is univoltine, it may have difficulties adapting to changing environmental conditions compared to species that have multiple generations a year. [24] For example, there has been a decrease in suitable overwintering environments for the butterflies, with open woodland decreasing in favour of more urban areas. [14] [24] Nitrogen pollution, declining nectar supplies, and rapid ecological changes have also been suggested as other hypothetical factors. [24] Concerns have been raised about the possible future increase of this population decline, but the butterfly mostly does not appear to be a conservation concern due to its widespread and common geographic presence. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Butterfly</span> Group of insects in the order Lepidoptera

Butterflies are winged insects from the lepidopteran suborder Rhopalocera, characterized by large, often brightly coloured wings that often fold together when at rest, and a conspicuous, fluttering flight. The group comprises the superfamilies Hedyloidea and Papilionoidea. The oldest butterfly fossils have been dated to the Paleocene, about 56 million years ago, though they likely originated in the Late Cretaceous, about 101 million years ago.

<span class="mw-page-title-main">Small tortoiseshell</span> Species of butterfly in the family Nymphalidae

The small tortoiseshell is a colourful Eurasian butterfly in the family Nymphalidae. Adults feed on nectar and may hibernate over winter; in warmer climates they may have two broods in a season. While the dorsal surface of the wings is vividly marked, the ventral surface is drab, providing camouflage. Eggs are laid on the common nettle, on which the larvae feed.

<span class="mw-page-title-main">Pieridae</span> Butterfly family in superfamily Papilionoidea

The Pieridae are a large family of butterflies with about 76 genera containing about 1,100 species, mostly from tropical Africa and tropical Asia with some varieties in the more northern regions of North America and Eurasia. Most pierid butterflies are white, yellow, or orange in coloration, often with black spots. The pigments that give the distinct coloring to these butterflies are derived from waste products in the body and are a characteristic of this family. The family was created by William John Swainson in 1820.

<i>Zerene eurydice</i> Species of butterfly

Zerene eurydice, the California dogface butterfly, belongs to the family Pieridae and is a sister genus to Colias.The Zerene eurydice and the Colias both share the "characteristic of having yellow-orange and black wing coordination." Additionally the,"Colias and Zerene eurydice males have bright UV patterns on their wings." There are only two species of the Zerene, the Zerene eurydice, and the Zerene cesonia, also known as the Southern dogface. A study that collected mitochondrial DNA from various Colias butterfly species found that Z. eurydice had decreased divergence from the ingroup, highlighting how closely related these two genera are. This species is endemic to California, and is California's state insect. The California dogface butterfly varies in its wing color and pattern.

<i>Pieris brassicae</i> Species of butterfly

Pieris brassicae, the large white, also called cabbage butterfly, cabbage white, cabbage moth (erroneously), or in India the large cabbage white, is a butterfly in the family Pieridae. It is a close relative of the small white, Pieris rapae.

<span class="mw-page-title-main">Common blue</span> Species of butterfly

The common blue butterfly or European common blue is a butterfly in the family Lycaenidae and subfamily Polyommatinae. The butterfly is found throughout the Palearctic and has been introduced to North America. Butterflies in the Polyommatinae are collectively called blues, from the coloring of the wings. Common blue males usually have wings that are blue above with a black-brown border and a white fringe. The females are usually brown above with a blue dusting and orange spots.

<span class="mw-page-title-main">Small heath (butterfly)</span> Species of butterfly

The small heath is a butterfly species belonging to the family Nymphalidae, classified within the subfamily Satyrinae. It is the smallest butterfly in this subfamily. The small heath is diurnal and flies with a noticeable fluttering flight pattern near the ground. It rests with closed wings when not in flight. It is widespread in colonies throughout the grasslands of Eurasia and north-western Africa, preferring drier habitats than other Coenonympha, such as salt marshes, alpine meadows, wetlands, and grasslands near water. However, habitat loss caused by human activities has led to a decline in populations in some locations.

<i>Anthocharis cardamines</i> Species of butterfly in the family Pieridae

Anthocharis cardamines, the orange tip, is a butterfly in the family Pieridae, which contains about 1,100 species. A. cardamines is mainly found throughout Europe and temperate Asia (Palearctic) The males feature wings with a signature orange pigmentation, which is the origin of A. cardamines' common name.

<i>Polygonia c-album</i> Species of butterfly

Polygonia c-album, the comma, is a food generalist (polyphagous) butterfly species belonging to the family Nymphalidae. The angular notches on the edges of the forewings are characteristic of the genus Polygonia, which is why species in the genus are commonly referred to as anglewing butterflies. Comma butterflies can be identified by their prominent orange and dark brown/black dorsal wings.

<i>Leptidea sinapis</i> Species of butterfly

Leptidea sinapis, or the wood white butterfly of the family Pieridae, is a small white butterfly that is mainly found in England, Ireland, and Northern Europe. The butterfly has white wings with grey or yellow markings near the center or tip of the wing. It flies slowly and low over its shrubbery habitat. Males initiate courtship with females and can mate multiply, while females tend to only mate once in their lifetime.

<i>Colias croceus</i> Species of butterfly

Colias croceus, clouded yellow, is a small butterfly of the family Pieridae, the yellows and whites.

<i>Hypolimnas bolina</i> Species of butterfly

Hypolimnas bolina, the great eggfly, common eggfly, varied eggfly, or in New Zealand the blue moon butterfly, is a species of nymphalid butterfly found from Madagascar to Asia and Australia.

<i>Colias eurytheme</i> Species of butterfly

Colias eurytheme, the orange sulphur, also known as the alfalfa butterfly and in its larval stage as the alfalfa caterpillar, is a butterfly of the family Pieridae, where it belongs to the lowland group of "clouded yellows and sulphurs" subfamily Coliadinae. It is found throughout North America from southern Canada to Mexico.

Overwintering is the process by which some organisms pass through or wait out the winter season, or pass through that period of the year when "winter" conditions make normal activity or even survival difficult or near impossible. In some cases "winter" is characterized not necessarily by cold but by dry conditions; passing through such periods could likewise be called overwintering.

<i>Gonepteryx</i> Butterfly genus in family Pieridae

Gonepteryx is a genus of butterflies in the family Pieridae; there are about 15 species of Gonepteryx. They live in Europe, Asia, and Northern Africa. They are commonly known as brimstones for the bright yellow colour of the wings of most species. These share the same name as the much larger tropical genus Anteos. These inhabit much of central and South America and also North America. This species are known for being the kings of butterfly longevity. 10–13 months is the lifespan for many temperate species. Anteos, however, is much shorter lived. The adults will often mimic ivy leaves at rest. Male brimstone butterflies can withstand cooler temperatures and are able to fly after just 4 months in hibernation. Female brimstone butterflies need warmer climates to survive, and therefore are in hibernation longer. The male butterflies have a longer life span as they are more resilient to a wider range of temperatures, unlike the female.

<i>Gonepteryx cleopatra</i> Species of butterfly

Gonepteryx cleopatra, the Cleopatra or Cleopatra butterfly, is a medium-sized butterfly of the family Pieridae.

<i>Delias aganippe</i> Species of butterfly

Delias aganippe, the wood white or red-spotted Jezebel, is a butterfly in the family Pieridae.

<span class="mw-page-title-main">External morphology of Lepidoptera</span> External features of butterflies and moths

The external morphology of Lepidoptera is the physiological structure of the bodies of insects belonging to the order Lepidoptera, also known as butterflies and moths. Lepidoptera are distinguished from other orders by the presence of scales on the external parts of the body and appendages, especially the wings. Butterflies and moths vary in size from microlepidoptera only a few millimetres long, to a wingspan of many inches such as the Atlas moth. Comprising over 160,000 described species, the Lepidoptera possess variations of the basic body structure which has evolved to gain advantages in adaptation and distribution.

Butterflies, or members of the Papilionoidea superfamily, use two ultraviolet signals, UV reflectance or absorbance as a communication system. The ultraviolet region is the part of the electromagnetic spectrum between 10 nm and 400 nm in wavelength. Sensitivity to this region provides butterflies several benefits such as nectar guides for nectar, but it also provides a private communication channel unavailable to predators. With this secure line, butterflies are able to facilitate mating behavior and sex recognition.

<i>Lycaena rubidus</i> Species of butterfly

Lycaena rubidus, the ruddy copper, is a butterfly of the family Lycaenidae. It is found in the western mountains of North America. Adults lay their eggs on plants of the genus Rumex, which later become the larval food plants. This butterfly gets its name from the brightly colored wings of the males, which are important in sexual selection. Its larvae exhibit mutualism with red ants, and are often raised in ant nests until they reach adulthood. Adults are on wing from mid-July to early August.

References

  1. 1 2 European red list of Butterflies. Swaay, Chris van., European Commission. Directorate-General for Environment. International Union for Conservation of Nature and Natural Resources. Blue List Programme. Luxembourg: Publications Office of the European Union. 2010. ISBN   9789279141515. OCLC   641575222.{{cite book}}: CS1 maint: others (link)
  2. 1 2 3 4 5 Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel (2014-12-01). "Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly (Gonepteryx rhamni, Pieridae, Lepidoptera)". Naturwissenschaften. 101 (12): 1055–1063. Bibcode:2014NW....101.1055P. doi:10.1007/s00114-014-1244-5. ISSN   0028-1042. PMID   25280559. S2CID   14494428.
  3. 1 2 3 Gutiérrez, David; Thomas, Chris D. (2000-05-01). "Marginal range expansion in a host-limited butterfly species Gonepteryx rhamni". Ecological Entomology. 25 (2): 165–170. Bibcode:2000EcoEn..25..165G. doi:10.1046/j.1365-2311.2000.00241.x. ISSN   1365-2311. S2CID   83866795.
  4. 1 2 3 4 5 6 Pollard, E.; Hall, M. L. (1980). "Possible movement of Gonepteryx rhamni (L.) (Lepidoptera: Pieridae) between hibernating and breeding areas". Entomologist's Gazette. 31: 217–220. ISSN   0013-8894.
  5. 1 2 3 4 Brakefield, Paul M.; Shreeve, Tim G. (1992). "Avoidance, concealment, and defence". The Ecology of Butterflies in Britain. London: Oxford University Press. p. 98.
  6. 1 2 3 4 5 6 7 8 9 10 Wiklund, Christer; Lindfors, Virpi; Forsberg, Johan (1996). "Early Male Emergence and Reproductive Phenology of the Adult Overwintering Butterfly Gonepteryx rhamni in Sweden". Oikos. 75 (2): 227–240. Bibcode:1996Oikos..75..227W. doi:10.2307/3546246. JSTOR   3546246.
  7. 1 2 3 4 5 6 7 8 9 Wijnen, B.; Leertouwer, H. L.; Stavenga, D. G. (2007-12-01). "Colors and pterin pigmentation of pierid butterfly wings" (PDF). Journal of Insect Physiology. 53 (12): 1206–1217. Bibcode:2007JInsP..53.1206W. doi:10.1016/j.jinsphys.2007.06.016. hdl:11370/e0ea2484-2e5d-4c35-88fd-974db100049e. PMID   17669418.
  8. "Gonepteryx rhamni Linnaeus, 1758 - Common Brimstone | Butterfly".
  9. 1 2 3 4 5 6 7 McKay, H. V. (1991). "Egg-Laying Requirements of Woodland Butterflies; Brimstones (Gonepteryx rhamni) and Alder Buckthorn (Frangula alnus)". Journal of Applied Ecology. 28 (2): 731–743. Bibcode:1991JApEc..28..731M. doi:10.2307/2404579. JSTOR   2404579.
  10. 1 2 3 4 5 6 7 Dempster, J. P.; Lakhani, K. H.; Coward, P. A. (1986-02-01). "The use of chemical composition as a population marker in insects: a study of the Brimstone butterfly". Ecological Entomology. 11 (1): 51–65. Bibcode:1986EcoEn..11...51D. doi:10.1111/j.1365-2311.1986.tb00279.x. ISSN   1365-2311. S2CID   86578856.
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Frohawk, F. W. (1924). The Natural History of British Butterflies. Vol. 1. London: Hutchinson & Co. pp. 58–63.
  12. 1 2 3 4 Jennersten, Ola (1980). "Nectar source plant selection and distribution pattern in an autumn population of Gonepteryx rhamni (Lep. Pieridae)". Entomologisk Tidskrift. 101: 109–114. ISSN   0013-886X.
  13. Frohawk, F. W. (1940). "Food-plants of Gonepteryx rhamni". The Entomologist. 73: 68–69.
  14. 1 2 3 4 5 6 Gutiérrez, David; Wilson, Robert J. (2014-07-01). "Climate conditions and resource availability drive return elevational migrations in a single-brooded insect" (PDF). Oecologia. 175 (3): 861–873. Bibcode:2014Oecol.175..861G. doi:10.1007/s00442-014-2952-4. hdl: 10871/16841 . ISSN   0029-8549. PMID   24817198. S2CID   19024014.
  15. 1 2 3 4 5 Bibby, Tina J. (1983). "Oviposition by the Brimstone Butterfly, Gonepteryx Rhamni (L.)(Lepidoptera: Pieridae) in Monks Wood, Cambridgeshire in 1982". Entomologist's Gazette. 34: 229–234. ISSN   0013-8894.
  16. 1 2 3 4 Tuft, James William (November 1905 – December 1906). A Natural History of the British Lepidoptera: A Text-Book for Students and Collectors: by J. W. Tutt. Vol. 6. London: Swan Sonnenschein & Co. pp. 12, 45, 75.
  17. 1 2 3 Lozan, Aurel; Spitzer, Karel; Jaroš, Josef (2012-06-01). "Isolated peat bog habitats and their food connections: parasitoids (Hymenoptera: Ichneumonoidea) and their lepidopteran hosts". Journal of Insect Conservation. 16 (3): 391–397. doi:10.1007/s10841-011-9425-4. ISSN   1366-638X. S2CID   1653379.
  18. Giraldo, Marco A.; Stavenga, Doekele G. (2008-03-01). "Wing coloration and pigment gradients in scales of pierid butterflies" (PDF). Arthropod Structure & Development. 37 (2): 118–128. Bibcode:2008ArtSD..37..118G. doi:10.1016/j.asd.2007.09.003. hdl:11370/98cb9aa4-47c9-4849-af82-d4c4fcc79ec1. PMID   18089132.
  19. 1 2 Nekrutenko, Yuri P. (January 1965). "'Gynandromorphic Effect' and the Optical Nature of Hidden Wing-pattern in Gonepteryx rhamni; L. (Lepidoptera. Pieridae)". Nature. 205 (4969): 417–418. Bibcode:1965Natur.205..417N. doi:10.1038/205417a0. S2CID   4199869.
  20. 1 2 Wiklund, Christer; Forsberg, Johan (1991). "Sexual Size Dimorphism in Relation to Female Polygamy and Protandry in Butterflies: A Comparative Study of Swedish Pieridae and Satyridae". Oikos. 60 (3): 373–381. Bibcode:1991Oikos..60..373W. doi:10.2307/3545080. JSTOR   3545080.
  21. 1 2 Andersson, Susanna (2003-03-01). "Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae) to floral scents". Chemoecology. 13 (1): 1–11. Bibcode:2003Checo..13....1A. doi:10.1007/s000490300000. ISSN   0937-7409. S2CID   21156264.
  22. 1 2 3 4 Andersson, Susanna (2003-03-01). "Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae)". Chemoecology. 13 (1): 13–20. Bibcode:2003Checo..13...13A. doi:10.1007/s000490300001. ISSN   0937-7409. S2CID   22444773.
  23. Fox-Wilson, G. (1940-03-01). "Phenological Observations on the Brimstone Butterfly, Gonepteryx Rhamni (linn.) (lepid.)". Proceedings of the Royal Entomological Society of London A. 15 (1–3): 13–16. doi:10.1111/j.1365-3032.1940.tb00570.x. ISSN   1365-3032.
  24. 1 2 3 4 5 Van Dyck, Hans; Van Strien, Arco J.; Maes, Dirk; Van Swaay, Chris a. M. (2009-08-01). "Declines in Common, Widespread Butterflies in a Landscape under Intense Human Use". Conservation Biology. 23 (4): 957–965. Bibcode:2009ConBi..23..957V. doi:10.1111/j.1523-1739.2009.01175.x. ISSN   1523-1739. PMID   19637406.