Haplogroup E-M215

Last updated
Haplogroup
  • E-M215
  • E1b1b
E1b1b.png
Geographic distribution of the haplogroup E1b1b
Possible time of origin47,500—22,400 BP [1] [2] [3]
Coalescence age34,800 BP [4]
Possible place of origin East Africa [5] [1]
Ancestor E-P2
Descendants
Defining mutationsM215

E-M215 or E1b1b, formely known as E3b, is a major human Y-chromosome DNA haplogroup. E-M215 has two basal branches, E-M35 and E-M281. E-M35 is primarily distributed in North Africa and the Horn of Africa, and occurs at moderate frequencies in the Middle East, Europe, and Southern Africa. E-M281 occurs at a low frequency in Ethiopia.

Contents

Origins

E1b1b1 origins map E1b1b ancestry.png
E1b1b1 origins map

The origins of E-M215 were dated by Cruciani in 2007 to about 22,400 years ago in East Africa. [3] [Note 1]

Ancient DNA

According to Lazaridis et al. (2016), Natufian skeletal remains from the ancient Levant predominantly carried the Y-DNA haplogroup E1b1b. Of the five Natufian specimens analyzed for paternal lineages, three belonged to the E1b1b1b2(xE1b1b1b2a, E1b1b1b2b), E1b1(xE1b1a1, E1b1b1b1) and E1b1b1b2(xE1b1b1b2a, E1b1b1b2b) subclades (60%). Haplogroup E1b1b was also found at moderate frequencies among fossils from the ensuing Pre-Pottery Neolithic B culture, with the E1b1b1 and E1b1b1b2(xE1b1b1b2a, E1b1b1b2b) subclades observed in two of seven PPNB specimens (~29%). The scientists suggest that the Levantine early farmers may have spread southward into East Africa, bringing along Western Eurasian and Basal Eurasian ancestral components separate from that which would arrive later in North Africa.

Additionally, haplogroup E1b1b1 has been found in an ancient Egyptian mummy excavated at the Abusir el-Meleq archaeological site in Middle Egypt, which dates from a period between the late New Kingdom and the Roman era. [6] Fossils at the Iberomaurusian site of Ifri N'Amr Ou Moussa in Morocco, which have been dated to around 5,000 BCE, also carried haplotypes related to the E1b1b1b1a (E-M81) subclade. These ancient individuals bore an autochthonous Maghrebi genomic component that peaks among modern North Africans, indicating that they were ancestral to populations in the area. [7] The E1b1b haplogroup has likewise been observed in ancient Guanche fossils excavated in Gran Canaria and Tenerife on the Canary Islands, which have been radiocarbon-dated to between the 7th and 11th centuries CE. The clade-bearing individuals that were analysed for paternal DNA were inhumed at the Tenerife site, with all of these specimens found to belong to the E1b1b1b1a1 or E-M183 subclade (3/3; 100%). [8]

Loosdrecht et al. (2018) analysed genome-wide data from seven ancient Iberomaurusian individuals from the Grotte des Pigeons near Taforalt in eastern Morocco. The fossils were directly dated to between 15,100 and 13,900 calibrated years before present. The scientists found that five male specimens with sufficient nuclear DNA preservation belonged to the E1b1b1a1 (M78) subclade, with one skeleton bearing the E1b1b1a1b1 parent lineage to E-V13, another male specimen belonged to E1b1b (M215*). [9]

Distribution

In Africa, E-M215 is distributed in highest frequencies in the Horn of Africa and North Africa, specifically in the countries Somalia and Morocco, whence it has in recent millennia expanded as far south as South Africa, and northwards into Western Asia and Europe (especially the Mediterranean and the Balkans). [10] [11] [12] [13] E-M281 has been found in Ethiopia. [11]

Almost all E-M215 men are also in E-M35. In 2004, M215 was found to be older than M35 when individuals were found who have the M215 mutation, but do not have M35 mutation. [10] In 2013, Di Cristofaro et al. (2013) found one individual in Khorasan, North-East Iran to be positive for M215 but negative for M35. [14]

Geographic distribution of Y-chromosome haplogroups of select African, Middle Eastern and European populations. Predominant Haplogroups.png
Geographic distribution of Y-chromosome haplogroups of select African, Middle Eastern and European populations.

E-M215 and E-M35 are quite common among Afroasiatic speakers. The linguistic group and carriers of E-M35 lineage have a high probability to have arisen and dispersed together from the Afroasiatic Urheimat. [16] Amongst populations with an Afro-Asiatic speaking history, a significant proportion of Jewish male lineages are E-M35. [17] Haplogroup E-M35, which accounts for approximately 18% [11] to 20% [18] [19] of Ashkenazi and 8.6% [20] to 30% [11] of Sephardi Y-chromosomes, appears to be one of the major founding lineages of the Jewish population. [21] [Note 2]

E-M215 association with endurance

Moran et al. (2004) observed that among Y-DNA (paternal) clades borne by elite endurance athletes in Ethiopia, the haplogroup E3b1 was negatively correlated with elite athletic endurance performance, [22] whereas the haplogroups E*, E3*, K*(xP), [22] and J*(xJ2) were significantly more frequent among the elite endurance athletes. [22]

Subclades

E-M35

Haplogroup E-M35 is a subclade of E-M215.

E-M281

Haplogroup E-M281 is a subclade of E-M215.

Phylogenetics

Phylogenetic history

Prior to 2002, there were in academic literature at least seven naming systems for the Y-Chromosome phylogenetic tree. This led to considerable confusion. In 2002, the major research groups came together and formed the Y-Chromosome Consortium (YCC). They published a joint paper that created a single new tree that all agreed to use. Later, a group of citizen scientists with an interest in population genetics and genetic genealogy formed a working group to create an amateur tree aiming at being above all timely. The table below brings together all of these works at the point of the landmark 2002 YCC Tree. This allows a researcher reviewing older published literature to quickly move between nomenclatures.

YCC 2002/2008 (Shorthand)(α)(β)(γ)(δ)(ε)(ζ)(η)YCC 2002 (Longhand)YCC 2005 (Longhand)YCC 2008 (Longhand)YCC 2010r (Longhand)ISOGG 2006ISOGG 2007ISOGG 2008ISOGG 2009ISOGG 2010ISOGG 2011ISOGG 2012
E-P29 21III3A13Eu3H2BE*EEEEEEEEEE
E-M33 21III3A13Eu3H2BE1*E1E1aE1aE1E1E1aE1aE1aE1aE1a
E-M44 21III3A13Eu3H2BE1aE1aE1a1E1a1E1aE1aE1a1E1a1E1a1E1a1E1a1
E-M75 21III3A13Eu3H2BE2aE2E2E2E2E2E2E2E2E2E2
E-M54 21III3A13Eu3H2BE2bE2bE2bE2b1-------
E-P2 25III414Eu3H2BE3*E3E1bE1b1E3E3E1b1E1b1E1b1E1b1E1b1
E-M2 8III515Eu2H2BE3a*E3aE1b1E1b1aE3aE3aE1b1aE1b1aE1b1aE1b1a1E1b1a1
E-M58 8III515Eu2H2BE3a1E3a1E1b1a1E1b1a1E3a1E3a1E1b1a1E1b1a1E1b1a1E1b1a1a1aE1b1a1a1a
E-M116.2 8III515Eu2H2BE3a2E3a2E1b1a2E1b1a2E3a2E3a2E1b1a2E1b1a2E1ba12removedremoved
E-M149 8III515Eu2H2BE3a3E3a3E1b1a3E1b1a3E3a3E3a3E1b1a3E1b1a3E1b1a3E1b1a1a1cE1b1a1a1c
E-M154 8III515Eu2H2BE3a4E3a4E1b1a4E1b1a4E3a4E3a4E1b1a4E1b1a4E1b1a4E1b1a1a1g1cE1b1a1a1g1c
E-M155 8III515Eu2H2BE3a5E3a5E1b1a5E1b1a5E3a5E3a5E1b1a5E1b1a5E1b1a5E1b1a1a1dE1b1a1a1d
E-M10 8III515Eu2H2BE3a6E3a6E1b1a6E1b1a6E3a6E3a6E1b1a6E1b1a6E1b1a6E1b1a1a1eE1b1a1a1e
E-M35 25III414Eu4H2BE3b*E3bE1b1b1E1b1b1E3b1E3b1E1b1b1E1b1b1E1b1b1removedremoved
E-M78 25III414Eu4H2BE3b1*E3b1E1b1b1aE1b1b1a1E3b1aE3b1aE1b1b1aE1b1b1aE1b1b1aE1b1b1a1E1b1b1a1
E-M148 25III414Eu4H2BE3b1aE3b1aE1b1b1a3aE1b1b1a1c1E3b1a3aE3b1a3aE1b1b1a3aE1b1b1a3aE1b1b1a3aE1b1b1a1c1E1b1b1a1c1
E-M81 25III414Eu4H2BE3b2*E3b2E1b1b1bE1b1b1b1E3b1bE3b1bE1b1b1bE1b1b1bE1b1b1bE1b1b1b1E1b1b1b1a
E-M107 25III414Eu4H2BE3b2aE3b2aE1b1b1b1E1b1b1b1aE3b1b1E3b1b1E1b1b1b1E1b1b1b1E1b1b1b1E1b1b1b1aE1b1b1b1a1
E-M165 25III414Eu4H2BE3b2bE3b2bE1b1b1b2E1b1b1b1b1E3b1b2E3b1b2E1b1b1b2aE1b1b1b2aE1b1b1b2aE1b1b1b2aE1b1b1b1a2a
E-M123 25III414Eu4H2BE3b3*E3b3E1b1b1cE1b1b1cE3b1cE3b1cE1b1b1cE1b1b1cE1b1b1cE1b1b1cE1b1b1b2a
E-M34 25III414Eu4H2BE3b3a*E3b3aE1b1b1c1E1b1b1c1E3b1c1E3b1c1E1b1b1c1E1b1b1c1E1b1b1c1E1b1b1c1E1b1b1b2a1
E-M136 25III414Eu4H2BE3ba1E3b3a1E1b1b1c1aE1b1b1c1a1E3b1c1aE3b1c1aE1b1b1c1a1E1b1b1c1a1E1b1b1c1a1E1b1b1c1a1E1b1b1b2a1a1

Research publications

The following research teams per their publications were represented in the creation of the YCC Tree.

Discussion

E-M215 and E1b1b1 are the currently accepted names found in the proposals of the Y Chromosome Consortium (YCC), for the clades defined by mutation M215 and M35 respectively, which can also be referred to as E-M215 and E-M35. [23] The nomenclature E3b (E-M215) and E3b1 (E-M35) respectively were the YCC defined names used to designate the same haplogroups in older literature with E-M35 branching as a separate subclade of E-M215 in 2004. [10] Prior to 2002 these haplogroups were not designated in a consistent way, and nor was their relationship to other related clades within haplogroup E and haplogroup DE. But in non-standard or older terminologies, E-M215 is for example approximately the same as "haplotype V", still used in publications such as Gérard et al. (2006). [24]

Phylogenetic trees

Cladogram with the main subclades:

E1b1b (M215) 

The following phylogenetic tree is based on the YCC 2008 tree and subsequent published research as summarized by ISOGG. It includes all known subclades as of June 2015 (Trombetta et al. 2015) [25] [23] [24]

  • E-M215 (E1b1b)
    • E-M215*. Rare or non-existent.
    • E-M35 (E1b1b1)
      • E-V68 (E1b1b1a)
        • E-V2009. Found in individuals in Sardinia and Morocco.
        • E-M78 (E1b1b1a1). North Africa, Horn of Africa, West Asia, Sicily. (Formerly "E1b1b1a".)
          • E-M78*
          • E-V1477. Found in Tunisian Jews.
          • E-V1083.
            • E-V1083*. Found only in Eritrea (1.1%) and Sardinia (0.3%).
            • E-V13
            • E-V22
          • E-V1129
            • E-V12
              • E-V12*
              • E-V32
            • E-V264
              • E-V259. Found in North Cameroon.
              • E-V65
                • E-CTS194
      • E-Z827 (E1b1b1b) [26]
        • E-V257/L19 (L19, V257) – E1b1b1b1 [26]
          • E-PF2431
          • E-M81 (M81)
            • E-PF2546
              • E-PF2546*
              • E-CTS12227
                • E-MZ11
                  • E-MZ12
              • E-A929
                • E-Z5009
                  • E-Z5009*
                  • E-Z5010
                  • E-Z5013
                    • E-Z5013*
                    • E-A1152
                • E-A2227
                  • E-A428
                  • E-MZ16
                • E-PF6794
                  • E-PF6794*
                  • E-PF6789
                    • E-MZ21
                    • E-MZ23
                    • E-MZ80
                • E-A930
                • E-Z2198/E-MZ46
                  • E-A601
                  • E-L351
        • E-Z830 (Z830) – E1b1b1b2 [26]
          • E-M123 (M123)
            • E-M34 (M34)
              • E-M84 (M84)
                • E-M136 (M136)
              • E-M290 (M290)
              • E-V23 (V23)
              • E-L791 (L791,L792)
          • E-V1515. E-V1515 and its subclades are mainly restricted to eastern Africa.
            • E-V1515*
            • E-V1486
              • E-V1486*
              • E-V2881
                • E-V2881*
                • E-V1792
                • E-V92
              • E-M293 (M293)
                • E-M293*
                • E-P72 (P72)
                • E-V3065*
            • E-V1700
              • E-V42 (V42)
              • E-V1785
                • E-V1785*
                • E-V6 (V6)
      • E-V16/E-M281 (E1b1b2). Rare. Found in individuals in Ethiopia, Yemen and Saudi Arabia.

See also

Genetics

Y-DNA E subclades

Y-DNA backbone tree

Notes

  1. Cruciani et al. (2004) : "Several observations point to eastern Africa as the homeland for haplogroup E3b—that is, it had (1) the highest number of different E3b clades (table 1), (2) a high frequency of this haplogroup and a high microsatellite diversity, and, finally, (3) the exclusive presence of the undifferentiated E3b* paragroup ." As mentioned above, "E3b" is the old name for E-M215. Semino et al. (2004) : "This inference is further supported by the presence of additional Hg E lineal diversification and by the highest frequency of E-P2* and E-M35* in the same region. The distribution of E-P2* appears limited to eastern African peoples. The E-M35* lineage shows its highest frequency (19.2%) in the Ethiopian Oromo but with a wider distribution range than E-P2*." For E-M215 Cruciani et al. (2007) reduced their estimate to 22,400 from 25,600 in Cruciani et al. (2004), re-calibrating the same data.
  2. "Paragroup E-M35 * and haplogroup J-12f2a* fit the criteria for major AJ founding lineages because they are widespread both in AJ populations and in Near Eastern populations, and occur at much lower frequencies in European non-Jewish populations." Behar et al. (2004)

Related Research Articles

<span class="mw-page-title-main">Haplogroup J (Y-DNA)</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M304, also known as J, is a human Y-chromosome DNA haplogroup. It is believed to have evolved in Western Asia. The clade spread from there during the Neolithic, primarily into North Africa, the Horn of Africa, the Socotra Archipelago, the Caucasus, Europe, Anatolia, Central Asia, South Asia, and Southeast Asia.

Haplogroup A is a human Y-chromosome DNA haplogroup, which includes all living human Y chromosomes. Bearers of extant sub-clades of haplogroup A are almost exclusively found in Africa, in contrast with haplogroup BT, bearers of which participated in the Out of Africa migration of early modern humans. The known branches of haplogroup A are A00, A0, A1a, and A1b1; these branches are only very distantly related, and are not more closely related to each other than they are to haplogroup BT.

Haplogroup E-M96 is a human Y-chromosome DNA haplogroup. It is one of the two main branches of the older and ancestral haplogroup DE, the other main branch being haplogroup D. The E-M96 clade is divided into two main subclades: the more common E-P147, and the less common E-M75.

Haplogroup E-V38, also known as E1b1a-V38, is a major human Y-chromosome DNA haplogroup. E-V38 is primarily distributed in Africa. E-V38 has two basal branches, E-M329 and E-M2. E-M329 is a subclade mostly found in East Africa. E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of African Great Lakes; it also occurs at moderate frequencies in North Africa, West Asia, and Southern Europe.

<span class="mw-page-title-main">Human Y-chromosome DNA haplogroup</span> Human DNA groupings

In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by mutations in the non-recombining portions of DNA from the male-specific Y chromosome. Many people within a haplogroup share similar numbers of short tandem repeats (STRs) and types of mutations called single-nucleotide polymorphisms (SNPs).

Haplogroup DE is a human Y-chromosome DNA haplogroup. It is defined by the single nucleotide polymorphism (SNP) mutations, or UEPs, M1(YAP), M145(P205), M203, P144, P153, P165, P167, P183. DE is unique because it is distributed in several geographically distinct clusters. An immediate subclade, haplogroup D, is mainly found in East Asia, parts of Central Asia, and the Andaman Islands, but also sporadically in West Africa and West Asia. The other immediate subclade, haplogroup E, is common in Africa, and to a lesser extent the Middle East and southern Europe.

E-M35, also known as E1b1b1-M35, is a human Y-chromosome DNA haplogroup. E-M35 has two basal branches, E-V68 and E-Z827. E-V68 and E-Z827 are primarily distributed in North Africa and the Horn of Africa, and occur at lower frequencies in the Middle East, Europe, and Southern Africa.

Haplogroup E-P147 is a human Y-chromosome DNA haplogroup. Haplogroup E-P147, along with the less common haplogroup E-M75, is one of the two main branches of the older haplogroup E-M96. The E-P147 clade is commonly observed throughout Africa and is divided into two subclades: the less common, haplogroup E-M132, and the more common, haplogroup E-P177.

Haplogroup E-M132, formerly known as E-M33 (E1a), is a human Y-chromosome DNA haplogroup. Along with E-P177, it is one of the two main branches of the older E-P147 paternal clade. E-M132 is divided into two primary sub-branches, E-M44 and E-Z958, with many descendant subclades.

Haplogroup E-P177 is a human Y-chromosome DNA haplogroup. E-P177 has two known subclades, which are haplogroup E-P2 and haplogroup E-P75.

Haplogroup E-M75 is a human Y-chromosome DNA haplogroup. Along with haplogroup E-P147, it is one of the two main branches of the older haplogroup E-M96.

Haplogroup E-V68, also known as E1b1b1a, is a major human Y-chromosome DNA haplogroup found in North Africa, the Horn of Africa, Western Asia and Europe. It is a subclade of the larger and older haplogroup, known as E1b1b or E-M215. The E1b1b1a lineage is identified by the presence of a single nucleotide polymorphism (SNP) mutation on the Y chromosome, which is known as V68. It is a subject of discussion and study in genetics as well as genetic genealogy, archaeology, and historical linguistics.

Haplogroup E-P2, also known as E1b1, is a human Y-chromosome DNA haplogroup. E-P2 has two basal branches, E-V38 and E-M215. E-P2 had an ancient presence in East Africa and the Levant; presently, it is primarily distributed in Africa where it may have originated, and occurs at lower frequencies in the Middle East and Europe.

E-Z827, also known as E1b1b1b, is a major human Y-chromosome DNA haplogroup. It is the parent lineage to the E-Z830 and E-V257 subclades, and defines their common phylogeny. The former is predominantly found in the Middle East; the latter is most frequently observed in North Africa, with its E-M81 subclade observed among the ancient Guanche natives of the Canary Islands. E-Z827 is also found at lower frequencies in Europe, and in isolated parts of Southeast Africa.

In human genetics, Y Haplogroup E-M123 is a Y-chromosome haplogroup, and defined by the single nucleotide polymorphism (SNP) mutation M123. Like its closest relatives within the larger E-M215 haplogroup, E-M123 is found in Asia, Europe and Africa.

<span class="mw-page-title-main">Genetic studies on Moroccans</span>

Moroccan genetics encompasses the genetic history of the people of Morocco, and the genetic influence of this ancestry on world populations. It has been heavily influenced by geography.

Haplogroup A-L1085, also known as haplogroup A0-T is a human Y-DNA haplogroup. It is part of the paternal lineage of almost all humans alive today. The SNP L1085 has played two roles in population genetics: firstly, most Y-DNA haplogroups have diverged from it and; secondly, it defines the undiverged basal clade A-L1085*.

<span class="mw-page-title-main">Haplogroup E-M329</span> Human Y-chromosome DNA haplogroup

Haplogroup E-M329, also known as E1b1a2, is a human Y-chromosome DNA haplogroup. E-M329 is mostly found in East Africa.

<span class="mw-page-title-main">Haplogroup E-M2</span> Human Y-chromosome DNA haplogroup

Haplogroup E-M2, also known as E1b1a1-M2, is a human Y-chromosome DNA haplogroup. E-M2 is primarily distributed within Africa followed by West Asia. More specifically, E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of the African Great Lakes; it also occurs at moderate frequencies in North Africa, and the Middle East. E-M2 has several subclades, but many of these subhaplogroups are included in either E-L485 or E-U175. E-M2 is especially common among indigenous Africans who speak Niger-Congo languages, and was spread to Southern Africa and East Africa through the Bantu expansion.

<span class="mw-page-title-main">Haplogroup E-V12</span>

The human Y-chromosome haplogroup E-V12 is a subclade of E-M78, which in turn is part of the larger haplogroup E1b1b1. According to Cruciani et al. (2007), the E-V12 sublineage likely originated in Northern Africa. It has two main branches: E-V32 which is most common in the Horn of Africa, and E-CTS693 which is most common in Upper Egypt and to a lesser extent in Sudan. E-CTS693 is also scattered in low frequencies across the Levant, Anatolia, the Central Sahel, the African Great Lakes region, and Europe.

References

  1. 1 2 Trombetta 2015.
  2. Haber M, Jones AL, Connel BA, Asan, Arciero E, Huanming Y, Thomas MG, Xue Y, Tyler-Smith C (June 2019). "A Rare Deep-Rooting D0 African Y-chromosomal Haplogroup and its Implications for the Expansion of Modern Humans Out of Africa". Genetics. 212 (4): 1421–1428. doi: 10.1534/genetics.119.302368 . PMC   6707464 . PMID   31196864.
  3. 1 2 Cruciani et al. (2007)
  4. "E-M215 YTree".
  5. Cruciani et al. (2004).
  6. Schuenemann, Verena J.; et al. (2017). "Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods". Nature Communications. 8: 15694. Bibcode:2017NatCo...815694S. doi:10.1038/ncomms15694. PMC   5459999 . PMID   28556824.
  7. Fregel; et al. (2018). "Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe". bioRxiv   10.1101/191569 .
  8. Rodrı́guez-Varela; et al. (2017). "Genomic Analyses of Pre-European Conquest Human Remains from the Canary Islands Reveal Close Affinity to Modern North Africans". Current Biology. 27 (1–7): 3396–3402.e5. doi: 10.1016/j.cub.2017.09.059 . hdl: 2164/13526 . PMID   29107554.
  9. Van De Loosdrecht, Marieke; Bouzouggar, Abdeljalil; Humphrey, Louise; Posth, Cosimo; Barton, Nick; Aximu-Petri, Ayinuer; Nickel, Birgit; Nagel, Sarah; Talbi, El Hassan; El Hajraoui, Mohammed Abdeljalil; Amzazi, Saaïd; Hublin, Jean-Jacques; Pääbo, Svante; Schiffels, Stephan; Meyer, Matthias; Haak, Wolfgang; Jeong, Choongwon; Krause, Johannes (4 May 2018). "Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations". Science. 360 (6388): 548–552. Bibcode:2018Sci...360..548V. doi: 10.1126/science.aar8380 . PMID   29545507. S2CID   206666517.
  10. 1 2 3 Cruciani et al. (2004)
  11. 1 2 3 4 Semino et al. (2004)
  12. Rosser et al. (2000)
  13. Firasat et al. (2006)
  14. Di Cristofaro, Julie; et al. (October 18, 2013). "Afghan Hindu Kush: Where Eurasian Sub-Continent Gene Flows Converge". PLOS ONE. 8 (10): e76748. Bibcode:2013PLoSO...876748D. doi: 10.1371/journal.pone.0076748 . ISSN   1932-6203. OCLC   5534533323. PMC   3799995 . PMID   24204668. S2CID   16455960.
  15. Badro, Danielle A.; Douaihy, Bouchra; Haber, Marc; Youhanna, Sonia C.; Salloum, Angélique; Ghassibe-Sabbagh, Michella; Johnsrud, Brian; Khazen, Georges; Matisoo-Smith, Elizabeth; Soria-Hernanz, David F.; Wells, R. Spencer; Tyler-Smith, Chris; Platt, Daniel E.; Zalloua, Pierre A.; Consortium, The Genographic (2013-01-30). "Y-Chromosome and mtDNA Genetics Reveal Significant Contrasts in Affinities of Modern Middle Eastern Populations with European and African Populations". PLOS ONE. 8 (1): e54616. Bibcode:2013PLoSO...854616B. doi: 10.1371/journal.pone.0054616 . ISSN   1932-6203. PMC   3559847 . PMID   23382925.
  16. Ehret, Keita & Newman (2004); Keita & Boyce (2005); Keita (2008).
  17. Behar et al. (2003)
  18. Behar et al. (2004)
  19. Shen et al. (2004)
  20. Adams et al. (2008)
  21. Nebel et al. (2001)
  22. 1 2 3 Moran, Colin N.; et al. (2004). "Y chromosome haplogroups of elite Ethiopian endurance runners". Human Genetics. 115 (6): 492–7. doi:10.1007/s00439-004-1202-y. PMID   15503146. S2CID   13960753 . Retrieved 6 February 2017.
  23. 1 2 Karafet et al. (2008)
  24. 1 2 Y Chromosome Consortium "YCC" (2002)
  25. ISOGG (2011)
  26. 1 2 3 ISOGG 2015

Bibliography

Sources for conversion tables