Haplogroup E-M2 (former E3a / E1b1a) | |
---|---|
Possible time of origin | 39,200 years BP [2] |
Coalescence age | 16,300 years BP [2] |
Possible place of origin | West Africa [3] [4] or Central Africa [3] [4] |
Ancestor | E-V38 |
Descendants | E-Z5994, E-V43 |
Defining mutations | M2, DYS271/SY81, M291, P1/PN1, P189.1, P293.1 |
Haplogroup E-M2, also known as E1b1a1-M2, is a human Y-chromosome DNA haplogroup. E-M2 is primarily distributed within Africa followed by West Asia. More specifically, E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of the African Great Lakes; it also occurs at moderate frequencies in North Africa, and the Middle East. E-M2 has several subclades, but many of these subhaplogroups are included in either E-L485 or E-U175. E-M2 is especially common among indigenous Africans who speak Niger-Congo languages, and was spread to Southern Africa and East Africa through the Bantu expansion.
The discovery of two SNPs (V38 and V100) by Trombetta et al. (2011) significantly redefined the E-V38 phylogenetic tree. This led the authors to suggest that E-V38 may have originated in East Africa. E-V38 joins the West African-affiliated E-M2 and the Northeast African-affiliated E-M329 with an earlier common ancestor who, like E-P2, may have also originated in East Africa. [5] The downstream SNP E-M180 may have originated in the humid Saharan savanna/grassland of North Africa between 14,000 BP and 10,000 BP. [6] [7] [8] [9] According to Wood et al. (2005) and Rosa et al. (2007), such population movements changed the pre-existing population Y chromosomal diversity in Central, Southern, and Southeastern Africa, replacing the previous haplogroup frequencies in these areas with the now dominant E1b1a1 lineages. Traces of earlier inhabitants, however, can be observed today in these regions via the presence of the Y DNA haplogroups A1a, A1b, A2, A3, and B-M60 that are common in certain populations, such as the Mbuti and Khoisan. [10] [11] [12] Shriner et al. (2018) similarly suggests that haplogroup E1b1a-V38 traversed across the Green Sahara from east to west around 19,000 years ago, where E1b1a1-M2 may have subsequently originated in West Africa or Central Africa. Shriner et al. (2018) also traces this movement via sickle cell mutation, which likely originated during the Green Sahara period. [4]
At Xaro, in Botswana, there were two individuals, dated to the Early Iron Age (1400 BP); one carried haplogroups E1b1a1a1c1a and L3e1a2, and another carried haplogroups E1b1b1b2b (E-M293, E-CTS10880) and L0k1a2. [13] [14]
At Taukome, in Botswana, an individual, dated to the Early Iron Age (1100 BP), carried haplogroups E1b1a1 (E-M2, E-Z1123) and L0d3b1. [13] [14]
At Kindoki, in the Democratic Republic of Congo, there were three individuals, dated to the protohistoric period (230 BP, 150 BP, 230 BP); one carried haplogroups E1b1a1a1d1a2 (E-CTS99, E-CTS99) and L1c3a1b, another carried haplogroup E (E-M96, E-PF1620), and the last carried haplogroups R1b1 (R-P25 1, R-M415) and L0a1b1a1. [13] [14]
Hawass et al. (2012) determined that the ancient Egyptian mummy of an unknown man buried with Ramesses III was, because of the proven genetic relationship and a mummification process that suggested punishment, a good candidate for the pharaoh's son, Pentaweret, who was the only son to revolt against his father. [15] It was impossible to determine his cause of death. [15] Using Whit Athey's haplogroup predictor based on Y-STR values, both mummies were predicted to share the Y chromosomal haplogroup E1b1a1-M2 and 50% of their genetic material, which pointed to a father-son relationship. [15] Gad et al. (2021) indicates that Ramesses III and Unknown Man E, possibly Pentawere, carried haplogroup E1b1a. [16]
At Deloraine Farm, in Nakuru County, Kenya, an iron metallurgist of the Iron Age carried haplogroups E1b1a1a1a1a/E-M58 and L5b1. [17] [18]
At Lamu, Pate Island, Faza, in Kenya, an individual, dated between 1500 CE and 1700 CE, carried haplogroups E1b1a1a1a2a1a and L3e3a. [19]
At Taita Taveta, Makwasinyi, in Kenya, an individual, dated between 1650 CE and 1950 CE, carried haplogroups E1b1a1a1a2a1a and L4b2a. [19]
At Taita Taveta, Makwasinyi, in Kenya, an individual, dated between 1650 CE and 1950 CE, carried haplogroups E1b1a1a1a2a1a3b1d1c and L1c3b1a. [19]
At Taita Taveta, Makwasinyi, in Kenya, an individual, dated between 1650 CE and 1950 CE, carried haplogroups E1b1a1a1a2a1a and L2a1+143. [19]
At Taita Taveta, Makwasinyi, in Kenya, an individual, dated between 1667 cal CE and 1843 cal CE, carried haplogroups E1b1a1a1a2a1a3b1d1c and L2a1+143. [19]
At Taita Taveta, Makwasinyi, in Kenya, an individual, dated between 1709 cal CE and 1927 cal CE, carried haplogroups E1b1a1a1a2a1a3a1d~ and L3a2. [19]
At Songo Mnara, in Tanzania, an individual, dated between 1418 cal CE and 1450 cal CE, carried haplogroups E1b1a1~ and L3e2b. [19]
At Lindi, in Tanzania, an individual, dated between 1511 cal CE and 1664 cal CE, carried haplogroups E1b1a1a1a2a1a3a1d~ and L0a1a2. [19]
At Pont-sur-Seine, in France, a male individual, dated to the Middle Neolithic, carried haplogroups E1b1a1a1a1c2c and U5b1-16189-@16192. [20]
At a San Jose de los Naturales Royal Hospital burial site, in Mexico City, Mexico, three enslaved West Africans of West African and Southern African ancestry, dated between 1453 CE and 1626 CE, 1450 CE and 1620 CE, and 1436 CE and 1472 CE, were found; one carried haplogroups E1b1a1a1c1b/E-M263.2 and L1b2a, another carried haplogroups E1b1a1a1d1/E-P278.1/E-M425 and L3d1a1a, and the last carried haplogroups E1b1a1a1c1a1c/E-CTS8030 and L3e1a1a. [21] Human leukocyte antigen alleles further confirm that the individuals were of Sub-Saharan African origin. [22]
At Cabeço da Amoreira, in Portugal, an enslaved West African man, who may have been from the Senegambian coastal region of Gambia, Mauritania, or Senegal, and carried haplogroups E1b1a and L3b1a, was buried among shell middens between the 16th century CE and the 18th century CE. [23]
In Saint Helena, 20 freed Africans, [24] [25] who were dated to the 19th century CE, [24] were also of western Central African [24] [26] [27] (e.g., Bantu peoples of Gabon and Angola) ancestry. [24] One female individual carried haplogroup L1b1a10b. [28] One female individual carried haplogroup L2a1f. [28] One female individual carried haplogroup L2a1a3c. [28] One male individual carried haplogroups E1b1a1a1a2a1a3b1d and L1c3a. [28] One male individual carried haplogroups E1b1a1a1a1c1a1a and L0a1b2a. [28] One male individual carried haplogroups E1b1a1a1a2a1a3b1a2a2 and L0a1e. [28] One male individual carried haplogroups E1b1a1a1a2a1a3b1 and L2a1f1. [28] One male individual carried haplogroups E1b1a1 and L3. [28] One male individual carried haplogroups E1b1a1a1a2a1a3b1d and L3e1e. [28] One male individual carried haplogroups E1b1a1a1a2a1a3a1d and L3e3b2. [28] One male individual carried haplogroups E1b1a1a1a1c1a1a3 and L3e1a3a. [28] One male individual carried haplogroups E1b1a1a1a2a1a3b1a2a2 and L2b1a. [28] One male individual carried haplogroups E1b1a1a1a2a1a3b1 and L3f1b1a. [28] One male individual carried haplogroups E1b1a1a1a2a1a3b1d1c1a and L3d3a1. [28] One male individual carried haplogroups B2a1a1a1 and L3e2b1. [28] One male individual carried haplogroups E1b1a1a1a2a1a3b1d1c1a and L2a1f. [28] One male individual carried haplogroups E1b1a1a1a1c1a1a3a1c1 and L3e1d1a. [28] One male individual carried haplogroups E1b1a1a1a2a1a3a1d and L1b1a10. [28] One male individual carried haplogroups E1b1a1a1a1c1a1a3a1c and L2a1f1. [28] One male individual carried haplogroups E1b1a1a1a1c1a1 and L2b1a. [28] An enslaved African American man and woman, from the 18th century CE Anson Street burial site in Charleston, South Carolina, who carried haplogroup L3e1e, shared this haplogroup with freed Africans in Saint Helena. [29] Based on those who were present among enlaved Africans, the ratio of males-to-females supports the conclusion of there being a strong selection bias for males in the latter period of the Trans-Atlantic Slave Trade. [24] [30] [31] Consequently, due to this study on the freed Africans of Saint Helena, among other studies, greater genetic insights have been made into the Trans-Atlantic Slave Trade and its effects on the demographics of Africa. [32]
In Granada, a Muslim (Moor) of the Cordoba Caliphate, [33] who was of haplogroups E1b1a1 and H1+16189, [34] [35] as well as estimated to date between 900 CE and 1000 CE, and a Morisco, [33] who was of haplogroup L2e1, [34] [35] as well as estimated to date between 1500 CE and 1600 CE, were both found to be of West African (i.e., Gambian) and Iberian descent. [33]
At Avery’s Rest, in Chesapeake, Delaware, 3 out of 11 individuals were African Americans, who were dated between 1675 CE and 1725 CE; one was of West African ancestry and carried haplogroups E1b1a-CTS2447 and L3e3b, another was of western Central African Bantu-speaking ancestry and carried E1b1a-Z5974 and L0a1a2, and another was of West African and East African ancestry and carried E1b1a-Z5974 and L3d2. [36]
At Catoctin Furnace African American Cemetery, in Catoctin Furnace, Maryland, there were 27 African Americans found who were dated between 1774 CE and 1850 CE. [37] [38] One male individual, who was of 98.14% Sub-Saharan African ancestry, carried haplogroups E1b1a1a1a1c2c and L2a1+143+@16309. [39] One male individual, who was of 83.73% Sub-Saharan African and 7.74% European ancestry, carried haplogroups E1b1a1a1a1c1b1 and L3e2a1b1. [39] One male individual, who was of 84.94% Sub-Saharan African and 9.45% European ancestry, carried haplogroups E1b1a1a1a2a1a and L2a1+143+16189 (16192)+@16309. [39] One male individual, who was of 87.83% Sub-Saharan African and 8.23% European ancestry, carried haplogroups E1b1a1a1a1c1a1a3a1d1 and L3d1b3. [39] One male individual, who was of 98.14% Sub-Saharan African ancestry, carried haplogroups E1b1a1a1a1a and L3e2a1b1. [39] One male individual, who was of 93.87% Sub-Saharan African and 2.58% European ancestry, carried haplogroups E1b1a1a1 and L3e1. [39] One male individual, who was of 98.70% Sub-Saharan African ancestry, carried haplogroups E1b1a1a1a1c1b2a and L2a1a1. [39] One male individual, who was of 97.01% Sub-Saharan African ancestry, carried haplogroups E1b1a1a1a1c1a1 and L3e2a1b1. [39] One male individual, who was of 82.31% Sub-Saharan African and 10.24% European ancestry, carried haplogroups E1b1a1a1a1c1b and L3e2a1b1. [39] One male individual, who was of 91.82% Sub-Saharan African and 5.31% European ancestry, carried haplogroups E1b1a1a1a1c1a1 and L3e2. [39] One male individual, who was of 81.18% Sub-Saharan African and 14.86% European ancestry, carried haplogroups E1b1a1~ and L2c. [39]
At an Anson Street burial site, in Charleston, South Carolina, there were 18 African Americans found who were dated to the 18th century CE. [40] Banza was of western Central African ancestry and carried haplogroups E1b1a-CTS668 and L3e3b1. [40] Lima was of West African ancestry and carried haplogroups E1b1a-M4671 and L3b3. [40] Kuto was of western Central African ancestry and carried haplogroups E1b1a-CTS2198 and L2a1a2. [40] Anika was of Sub-Saharan African ancestry and carried haplogroups E1b1a-CTS6126 and L2b1. [40] Nana was of West African ancestry and carried haplogroup L2b3a. [40] Zimbu was of western Central African ancestry and carried haplogroups E1b1a-CTS5497 and L3e1e. [40] Wuta was of Sub-Saharan African ancestry and carried haplogroups E1b1a-CTS7305 and L3e2b+152. [40] Daba was of West African ancestry and carried haplogroups E1b1a-M4273 and L2c. [40] Fumu was of Sub-Saharan African ancestry and carried haplogroups B2a1a-Y12201 and L3e2b+152. [40] Lisa was of West African ancestry and carried haplogroups E1b1a-Z6020 and H100. [40] Ganda was of West African ancestry and carried haplogroups E1b1a-CTS5612 and L1c1c. [40] Coosaw was of West African and Native American ancestry and carried haplogroups E2b1a-CTS2400 and A2. [40] Kidzera was of western Central African ancestry and carried haplogroup L2a1a2c. [40] Pita was of Sub-Saharan African ancestry and carried haplogroups E1b1a-M4287 and L3e2b. [40] Tima was of western Central African ancestry and carried haplogroup L3e1e. [40] Jode was of Sub-Saharan African ancestry and carried haplogroups E1b1a-CTS4975 and L2a1a2c. [40] Ajana was of western Central African ancestry and carried haplogroup L2a1I. [40] Isi was of western Central African ancestry and carried haplogroup L3e2a. [40]
Amid the Green Sahara, the mutation for sickle cell originated in the Sahara [41] or in the northwest forest region of western Central Africa (e.g., Cameroon) [41] [42] by at least 7,300 years ago, [41] [42] though possibly as early as 22,000 years ago. [43] [42] The ancestral sickle cell haplotype to modern haplotypes (e.g., Cameroon/Central African Republic and Benin/Senegal haplotypes) may have first arose in the ancestors of modern West Africans, bearing haplogroups E1b1a1-L485 and E1b1a1-U175 or their ancestral haplogroup E1b1a1-M4732. [41] West Africans (e.g., Yoruba and Esan of Nigeria), bearing the Benin sickle cell haplotype, may have migrated through the Northeast Africa into the western Arabia. [41] West Africans (e.g., Mende of Sierra Leone), bearing the Senegal sickle cell haplotype, [44] [41] may have migrated into Mauritania (77% modern rate of occurrence) and Senegal (100%); they may also have migrated across the Sahara, into North Africa, and from North Africa, into Southern Europe, Turkey, and a region near northern Iraq and southern Turkey. [44] Some may have migrated into and introduced the Senegal and Benin sickle cell haplotypes into Basra, Iraq, where both occur equally. [44] West Africans bearing the Benin sickle cell haplotype, may have migrated into the northern region of Iraq (69.5%), Jordan (80%), Lebanon (73%), Oman (52.1%), and Egypt (80.8%). [44]
E-M2's frequency and diversity are highest in West Africa. Within Africa, E-M2 displays a west-to-east as well as a south-to-north clinal distribution. In other words, the frequency of the haplogroup decreases as one moves from western and southern Africa toward the eastern and northern parts of Africa. [45]
Population group | frequency | References |
---|---|---|
Bamileke | 96%-100% | [45] [46] |
Ewe | 97% | [11] |
Ga | 97% | [11] |
Hutu | 94.2% | [45] |
Yoruba | 93.1% | [47] |
Tutsi | 85.1% | [45] |
Fante | 84% | [11] |
Mandinka | 79%–87% | [10] [11] |
Ovambo | 82% | [11] |
Senegalese | 81% | [48] |
Ganda | 77% | [11] |
Bijagós | 76% | [10] |
Balanta | 73% | [10] |
Fula | 73% | [10] |
Kikuyu | 73% | [11] |
Herero | 71% | [11] |
Nalú | 71% | [10] |
Populations in Northwest Africa, central Eastern Africa and Madagascar have tested at more moderate frequencies.
Population group | frequency | References |
---|---|---|
Tuareg from Tânout, Niger | 44.4% (8/18 subjects) | [49] |
Comorian Shirazi | 41% | [50] |
Tuareg from Gorom-Gorom, Burkina Faso | 16.6% (3/18) | [49] |
Tuareg from Gossi, Mali | 9.1% (1/9) | [49] |
Cape Verdeans | 15.9% (32/201) | [51] |
Maasai | 15.4% (4/26) | [11] |
Luo | 66% (6/9) | [11] |
Iraqw | 11.11% (1/9) | [11] |
Comoros | 23.46% (69/294) | [50] |
Merina people (also called Highlanders) | 44% (4/9) | [52] |
Antandroy | 69.6% (32/46) | [52] |
Antanosy | 48.9% (23/47) | [52] |
Antaisaka | 37.5% (3/8) | [52] |
E-M2 is found at low to moderate frequencies in North Africa, and Northeast Africa. Some of the lineages found in these areas are possibly due to the Bantu expansion or other migrations. [45] [53] However, the discovery in 2011 of the E-M2 marker that predates E-M2 has led Trombetta et al. to suggest that E-M2 may have originated in East Africa. [5] In Eritrea and most of Ethiopia (excluding the Anuak), E-V38 is usually found in the form of E-M329, which is autochthonous, while E-M2 generally indicates Bantu migratory origins. [54] [55] [56]
Population group | frequency | References |
---|---|---|
Tuareg from Al Awaynat and Tahala, Libya | 46.5% (20/43) [a] | [57] |
Oran, Algeria | 8.6% (8/93) | [58] |
Berbers, southern and north-central Morocco | 9.5% (6/63) 5.8% (4/69) | [59] [b] [60] |
Moroccan Arabs | 6.8% (3/44) 1.9% (1/54) | [59] [60] |
Saharawis | 3.5% (1/29) | [59] |
Egyptians | 1.4% (2/147), 0% (0/73), 8.33% (3/36) | [45] [61] [62] |
Tunisians | 1.4% (2/148) | [62] |
Sudanese (may include Hausa migrants) | 0.9% (4/445) | [63] |
Somalia nationals (may include Bantu minorities ) | 1.5% (3/201) | [53] |
Outside of Africa, E-M2 has been found at low frequencies. The clade has been found at low frequencies in West Asia. A few isolated occurrences of E-M2 have also been observed among populations in Southern Europe, such as Croatia, Malta, Spain and Portugal. [64] [65] [66] [67]
Population group | frequency | References |
---|---|---|
Bahrain | 8.6% (46/562) | |
Saudi Arabians | 6.6% (11/157) | |
Omanis | 6.6% (8/121) | [45] |
Emiratis | 5.5% (9/164) | [70] |
Yemenis | 4.8% (3/62) | [70] |
Cypriots | 3.2% (2/62) | [67] |
Southern Iranians | 1.7% (2/117) | [71] |
Jordanians | 1.4% (2/139) | [72] |
Sri Lanka | 1.4% (9/638) | [73] |
Aeolian Islands, Italy | 1.2% (1/81) | [74] |
The Trans-Atlantic slave trade brought people to North America, Central America and South America including the Caribbean. Consequently, the haplogroup is often observed in the United States populations in men who self-identify as African Americans. [75] It has also been observed in a number of populations in Mexico, the Caribbean, Central America, and South America among people of African descent.
Population group | frequency | References |
---|---|---|
Americans | 7.7–7.9% [c] | [75] |
Cubans | 9.8% (13/132) | [76] |
Dominicans | 5.69% (2/26) | [77] |
Puerto Ricans | 19.23% (5/26) | [77] |
Nicaraguans | 5.5% (9/165) | [78] |
Several populations of Colombians | 6.18% (69/1116) | [79] |
Alagoas, Brazil | 4.45% (11/247) | [80] |
Bahia, Brazil | 19% (19/100) | [81] |
Bahamians | 58.63% (251/428) | [82] |
E1b1a1 is defined by markers DYS271/M2/SY81, M291, P1/PN1, P189, P293, V43, and V95. Whilst E1b1a reaches its highest frequency of 81% in Senegal, only 1 of the 139 Senegalese that were tested showed M191/P86. [48] In other words, as one moves to West Africa from western Central Africa, the less subclade E1b1a1f is found. Cruciani et al. (2002) states: "A possible explanation might be that haplotype 24 chromosomes [E-M2*] were already present across the Sudanese belt when the M191 mutation, which defines haplotype 22, arose in central western Africa. Only then would a later demic expansion have brought haplotype 22 chromosomes from central western to western Africa, giving rise to the opposite clinal distributions of haplotypes 22 and 24." [46]
E1b1a1a1 is commonly defined by M180/P88. The basal subclade is quite regularly observed in M2+ samples.
E1b1a1a1a is defined by marker M58. 5% (2/37) of the town Singa-Rimaïbé, Burkina Faso tested positive for E-M58. [46] 15% (10/69) of Hutus in Rwanda tested positive for M58. [45] Three South Africans tested positive for this marker. [12] One Carioca from Rio de Janeiro, Brazil tested positive for the M58 SNP. [83] The place of origin and age is unreported.
E1b1a1a1b is defined by M116.2, a private marker. A single carrier was found in Mali. [12] [d]
E1b1a1a1c is defined by private marker M149. This marker was found in a single South African. [12]
E1b1a1a1d is defined by a private marker M155. It is known from a single carrier in Mali. [12]
E1b1a1a1e is defined by markers M10, M66, M156 and M195. Wairak people in Tanzania tested 4.6% (2/43) positive for E-M10. [45] E-M10 was found in a single person of the Lissongo group in the Central African Republic and two members in a "Mixed" population from the Adamawa region. [12]
E1b1a1a1f is defined by L485. The basal node E-L485* appears to be somewhat uncommon but has not been sufficiently tested in large populations. The ancestral L485 SNP (along with several of its subclades) was very recently discovered. Some of these SNPs have little or no published population data and/or have yet to receive nomenclature recognition by the YCC.
E1b1a1a1g (YCC E1b1a8) is defined by marker U175. The basal E-U175* is extremely rare. Montano et al. (2011) only found one out of 505 tested African subjects who was U175 positive but negative for U209. [9] Brucato et al. found similarly low frequencies of basal E-U175* in subjects in the Ivory Coast and Benin. Veeramah et al. (2010) found U175 in tested Annang (45.3%), Ibibio (37%), Efik (33.3%), and Igbo (25.3%) but did not test for U209. [85]
The supposed "Bantu haplotype" found in E-U175 carriers is "present at appreciable frequencies in other Niger–Congo languages speaking peoples as far west as Guinea-Bissau". [85] This is the modal haplotype of STR markers that is common in carriers of E-U175. [e]
E-U175 haplotype | DYS19 | DYS388 | DYS390 | DYS391 | DYS392 | DYS393 | |
15 | 12 | 21 | 10 | 11 | 13 | ||
E1b1a1a1g has several subclades.
E1b1a1a1h is defined by markers P268 and P269. It was first reported in a person from the Gambia. [92]
Prior to 2002, there were in academic literature at least seven naming systems for the Y-Chromosome Phylogenetic tree. This led to considerable confusion. In 2002, the major research groups came together and formed the Y-Chromosome Consortium (YCC). They published a joint paper that created a single new tree that all agreed to use. Later, a group of citizen scientists with an interest in population genetics and genetic genealogy formed a working group to create an amateur tree aiming at being above all timely. The table below brings together all of these works at the point of the landmark 2002 YCC Tree. This allows a researcher reviewing older published literature to quickly move between nomenclatures.
YCC 2002/2008 (Shorthand) | (α) | (β) | (γ) | (δ) | (ε) | (ζ) | (η) | YCC 2002 (Longhand) | YCC 2005 (Longhand) | YCC 2008 (Longhand) | YCC 2010r (Longhand) | ISOGG 2006 | ISOGG 2007 | ISOGG 2008 | ISOGG 2009 | ISOGG 2010 | ISOGG 2011 | ISOGG 2012 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E-P29 | 21 | III | 3A | 13 | Eu3 | H2 | B | E* | E | E | E | E | E | E | E | E | E | E |
E-M33 | 21 | III | 3A | 13 | Eu3 | H2 | B | E1* | E1 | E1a | E1a | E1 | E1 | E1a | E1a | E1a | E1a | E1a |
E-M44 | 21 | III | 3A | 13 | Eu3 | H2 | B | E1a | E1a | E1a1 | E1a1 | E1a | E1a | E1a1 | E1a1 | E1a1 | E1a1 | E1a1 |
E-M75 | 21 | III | 3A | 13 | Eu3 | H2 | B | E2a | E2 | E2 | E2 | E2 | E2 | E2 | E2 | E2 | E2 | E2 |
E-M54 | 21 | III | 3A | 13 | Eu3 | H2 | B | E2b | E2b | E2b | E2b1 | - | - | - | - | - | - | - |
E-P2 | 25 | III | 4 | 14 | Eu3 | H2 | B | E3* | E3 | E1b | E1b1 | E3 | E3 | E1b1 | E1b1 | E1b1 | E1b1 | E1b1 |
E-M2 | 8 | III | 5 | 15 | Eu2 | H2 | B | E3a* | E3a | E1b1 | E1b1a | E3a | E3a | E1b1a | E1b1a | E1b1a | E1b1a1 | E1b1a1 |
E-M58 | 8 | III | 5 | 15 | Eu2 | H2 | B | E3a1 | E3a1 | E1b1a1 | E1b1a1 | E3a1 | E3a1 | E1b1a1 | E1b1a1 | E1b1a1 | E1b1a1a1a | E1b1a1a1a |
E-M116.2 | 8 | III | 5 | 15 | Eu2 | H2 | B | E3a2 | E3a2 | E1b1a2 | E1b1a2 | E3a2 | E3a2 | E1b1a2 | E1b1a2 | E1ba12 | removed | removed |
E-M149 | 8 | III | 5 | 15 | Eu2 | H2 | B | E3a3 | E3a3 | E1b1a3 | E1b1a3 | E3a3 | E3a3 | E1b1a3 | E1b1a3 | E1b1a3 | E1b1a1a1c | E1b1a1a1c |
E-M154 | 8 | III | 5 | 15 | Eu2 | H2 | B | E3a4 | E3a4 | E1b1a4 | E1b1a4 | E3a4 | E3a4 | E1b1a4 | E1b1a4 | E1b1a4 | E1b1a1a1g1c | E1b1a1a1g1c |
E-M155 | 8 | III | 5 | 15 | Eu2 | H2 | B | E3a5 | E3a5 | E1b1a5 | E1b1a5 | E3a5 | E3a5 | E1b1a5 | E1b1a5 | E1b1a5 | E1b1a1a1d | E1b1a1a1d |
E-M10 | 8 | III | 5 | 15 | Eu2 | H2 | B | E3a6 | E3a6 | E1b1a6 | E1b1a6 | E3a6 | E3a6 | E1b1a6 | E1b1a6 | E1b1a6 | E1b1a1a1e | E1b1a1a1e |
E-M35 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3b* | E3b | E1b1b1 | E1b1b1 | E3b1 | E3b1 | E1b1b1 | E1b1b1 | E1b1b1 | removed | removed |
E-M78 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3b1* | E3b1 | E1b1b1a | E1b1b1a1 | E3b1a | E3b1a | E1b1b1a | E1b1b1a | E1b1b1a | E1b1b1a1 | E1b1b1a1 |
E-M148 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3b1a | E3b1a | E1b1b1a3a | E1b1b1a1c1 | E3b1a3a | E3b1a3a | E1b1b1a3a | E1b1b1a3a | E1b1b1a3a | E1b1b1a1c1 | E1b1b1a1c1 |
E-M81 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3b2* | E3b2 | E1b1b1b | E1b1b1b1 | E3b1b | E3b1b | E1b1b1b | E1b1b1b | E1b1b1b | E1b1b1b1 | E1b1b1b1a |
E-M107 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3b2a | E3b2a | E1b1b1b1 | E1b1b1b1a | E3b1b1 | E3b1b1 | E1b1b1b1 | E1b1b1b1 | E1b1b1b1 | E1b1b1b1a | E1b1b1b1a1 |
E-M165 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3b2b | E3b2b | E1b1b1b2 | E1b1b1b1b1 | E3b1b2 | E3b1b2 | E1b1b1b2a | E1b1b1b2a | E1b1b1b2a | E1b1b1b2a | E1b1b1b1a2a |
E-M123 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3b3* | E3b3 | E1b1b1c | E1b1b1c | E3b1c | E3b1c | E1b1b1c | E1b1b1c | E1b1b1c | E1b1b1c | E1b1b1b2a |
E-M34 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3b3a* | E3b3a | E1b1b1c1 | E1b1b1c1 | E3b1c1 | E3b1c1 | E1b1b1c1 | E1b1b1c1 | E1b1b1c1 | E1b1b1c1 | E1b1b1b2a1 |
E-M136 | 25 | III | 4 | 14 | Eu4 | H2 | B | E3ba1 | E3b3a1 | E1b1b1c1a | E1b1b1c1a1 | E3b1c1a | E3b1c1a | E1b1b1c1a1 | E1b1b1c1a1 | E1b1b1c1a1 | E1b1b1c1a1 | E1b1b1b2a1a1 |
The following research teams per their publications were represented in the creation of the YCC tree.
This phylogenetic tree of haplogroup subclades is based on the Y-Chromosome Consortium (YCC) 2008 Tree, [92] the ISOGG Y-DNA Haplogroup E Tree, [7] and subsequent published research.
Haplogroup G (M201) is a human Y-chromosome haplogroup. It is one of two branches of the parent haplogroup GHIJK, the other being HIJK.
E-M215 or E1b1b, formerly known as E3b, is a major human Y-chromosome DNA haplogroup. E-M215 has two basal branches, E-M35 and E-M281. E-M35 is primarily distributed in North Africa and the Horn of Africa, and occurs at moderate frequencies in the Middle East, Europe, and Southern Africa. E-M281 occurs at a low frequency in Ethiopia.
Haplogroup A is a human Y-chromosome DNA haplogroup, which includes all living human Y chromosomes. Bearers of extant sub-clades of haplogroup A are almost exclusively found in Africa, in contrast with haplogroup BT, bearers of which participated in the Out of Africa migration of early modern humans. The known branches of haplogroup A are A00, A0, A1a, and A1b1; these branches are only very distantly related, and are not more closely related to each other than they are to haplogroup BT.
Haplogroup E-M96 is a human Y-chromosome DNA haplogroup. It is one of the two main branches of the older and ancestral haplogroup DE, the other main branch being haplogroup D. The E-M96 clade is divided into two main subclades: the more common E-P147, and the less common E-M75.
Haplogroup E-V38, also known as E1b1a-V38, is a major human Y-chromosome DNA haplogroup. E-V38 is primarily distributed in Africa. E-V38 has two basal branches, E-M329 and E-M2. E-M329 is a subclade mostly found in East Africa. E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of African Great Lakes; it also occurs at moderate frequencies in North Africa, West Asia, and Southern Europe.
The genetic history of the Middle East is the subject of research within the fields of human population genomics, archaeogenetics and Middle Eastern studies. Researchers use Y-DNA, mtDNA, and other autosomal DNA tests to identify the genetic history of ancient and modern populations of Egypt, Persia, Mesopotamia, Anatolia, Arabia, the Levant, and other areas.
Haplogroup R1b (R-M343), previously known as Hg1 and Eu18, is a human Y-chromosome haplogroup.
Haplogroup E-P147 is a human Y-chromosome DNA haplogroup. Haplogroup E-P147, along with the less common haplogroup E-M75, is one of the two main branches of the older haplogroup E-M96. The E-P147 clade is commonly observed throughout Africa and is divided into two subclades: the less common, haplogroup E-M132, and the more common, haplogroup E-P177.
Haplogroup E-M132, formerly known as E-M33 (E1a), is a human Y-chromosome DNA haplogroup. Along with E-P177, it is one of the two main branches of the older E-P147 paternal clade. E-M132 is divided into two primary sub-branches, E-M44 and E-Z958, with many descendant subclades.
Haplogroup E-P177 is a human Y-chromosome DNA haplogroup. E-P177 has two known subclades, which are haplogroup E-P2 and haplogroup E-P75.
Haplogroup E-M75 is a human Y-chromosome DNA haplogroup. Along with haplogroup E-P147, it is one of the two main branches of the older haplogroup E-M96.
Haplogroup E-P2, also known as E1b1, is a human Y-chromosome DNA haplogroup. E-P2 has two basal branches, E-V38 and E-M215. E-P2 had an ancient presence in the Levant; presently, it is primarily distributed in Africa where it may have originated, and occurs at lower frequencies in the Middle East and Europe.
African admixture in Europe refers to the presence of human genotypes attributable to periods of human population dispersals out of Africa in the genetic history of Europe.
E-Z827, also known as E1b1b1b, is a major human Y-chromosome DNA haplogroup. It is the parent lineage to the E-Z830 and E-V257 subclades, and defines their common phylogeny. The former is predominantly found in the Middle East; the latter is most frequently observed in North Africa, with its E-M81 subclade observed among the ancient Guanche natives of the Canary Islands. E-Z827 is also found at lower frequencies in Europe, and in isolated parts of Southeast Africa.
The genetic history of Egypt reflects its geographical location at the crossroads of several major biocultural areas: North Africa, the Sahara, the Middle East, the Mediterranean and sub-Saharan Africa.
Haplogroup A-L1085, also known as haplogroup A0-T is a human Y-DNA haplogroup. It is part of the paternal lineage of almost all humans alive today. The SNP L1085 has played two roles in population genetics: firstly, most Y-DNA haplogroups have diverged from it and; secondly, it defines the undiverged basal clade A-L1085*.
Haplogroup E-M329, also known as E1b1a2, is a human Y-chromosome DNA haplogroup. E-M329 is mostly found in East Africa.
The genetic history of Africa summarizes the genetic makeup and population history of African populations in Africa, composed of the overall genetic history, including the regional genetic histories of North Africa, West Africa, East Africa, Central Africa, and Southern Africa, as well as the recent origin of modern humans in Africa. The Sahara served as a trans-regional passageway and place of dwelling for people in Africa during various humid phases and periods throughout the history of Africa. It also served as a biological barrier that restricted geneflow between the northern and central parts of Africa since its desertification, contributing to the diverse and distinct population structures on the continent. Nonetheless, this did not stop contact between peoples north and south of the Sahara at various points, especially in prehistoric times when the climate conditions were warmer and wetter.
The genetic history of the African diaspora is composed of the overall genetic history of the African diaspora, within regions outside of Africa, such as North America, Central America, the Caribbean, South America, Europe, Asia, and Australia; this includes the genetic histories of African Americans, Afro-Canadians, Afro-Caribbeans, Afro-Latinos, Afro-Europeans, Afro-Asians, and African Australians.
The genetic history of West Africa encompasses the genetic history of the people of West Africa. The Sahara served as a trans-regional passageway and place of dwelling for people in Africa during various humid phases and periods throughout the history of Africa.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: numeric names: authors list (link)