Haplogroup E-M2

Last updated
Haplogroup E-M2 (former E3a / E1b1a)
Geographical frequency distribution of Haplogroup E-M2 (Y-DNA).png
Interpolated frequency distribution. [1]
Possible time of origin39,200 years BP [2]
Coalescence age16,300 years BP [2]
Possible place of origin West Africa [3] [4] or Central Africa [3] [4]
Ancestor E-V38
DescendantsE-Z5994, E-V43
Defining mutationsM2, DYS271/SY81, M291, P1/PN1, P189.1, P293.1

Haplogroup E-M2, also known as E1b1a1-M2, is a human Y-chromosome DNA haplogroup. E-M2 is primarily distributed within Africa followed by West Asia. More specifically, E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of the African Great Lakes; it also occurs at moderate frequencies in North Africa, and the Middle East. E-M2 has several subclades, but many of these subhaplogroups are included in either E-L485 or E-U175. E-M2 is especially common among indigenous Africans who speak Niger-Congo languages, and was spread to Southern Africa and East Africa through the Bantu expansion.

Contents

Origins

The discovery of two SNPs (V38 and V100) by Trombetta et al. (2011) significantly redefined the E-V38 phylogenetic tree. This led the authors to suggest that E-V38 may have originated in East Africa. E-V38 joins the West African-affiliated E-M2 and the Northeast African-affiliated E-M329 with an earlier common ancestor who, like E-P2, may have also originated in East Africa. [5] The downstream SNP E-M180 may have originated in the humid Saharan savanna/grassland of North Africa between 14,000 BP and 10,000 BP. [6] [7] [8] [9] According to Wood et al. (2005) and Rosa et al. (2007), such population movements changed the pre-existing population Y chromosomal diversity in Central, Southern, and Southeastern Africa, replacing the previous haplogroup frequencies in these areas with the now dominant E1b1a1 lineages. Traces of earlier inhabitants, however, can be observed today in these regions via the presence of the Y DNA haplogroups A1a, A1b, A2, A3, and B-M60 that are common in certain populations, such as the Mbuti and Khoisan. [10] [11] [12] Shriner et al. (2018) similarly suggests that haplogroup E1b1a-V38 migrated across the Green Sahara from east to west around 19,000 years ago, where E1b1a1-M2 may have subsequently originated in West Africa or Central Africa. Shriner et al. (2018) also traces this migration via sickle cell mutation, which likely originated during the Green Sahara period. [4]

Ancient DNA

Within Africa

Botswana

At Xaro, in Botswana, there were two individuals, dated to the Early Iron Age (1400 BP); one carried haplogroups E1b1a1a1c1a and L3e1a2, and another carried haplogroups E1b1b1b2b (E-M293, E-CTS10880) and L0k1a2. [13] [14]

At Taukome, in Botswana, an individual, dated to the Early Iron Age (1100 BP), carried haplogroups E1b1a1 (E-M2, E-Z1123) and L0d3b1. [13] [14]

Democratic Republic of Congo

At Kindoki, in the Democratic Republic of Congo, there were three individuals, dated to the protohistoric period (230 BP, 150 BP, 230 BP); one carried haplogroups E1b1a1a1d1a2 (E-CTS99, E-CTS99) and L1c3a1b, another carried haplogroup E (E-M96, E-PF1620), and the last carried haplogroups R1b1 (R-P25 1, R-M415) and L0a1b1a1. [13] [14]

Egypt

Hawass et al. (2012) determined that the ancient Egyptian mummy of an unknown man buried with Ramesses was, because of the proven genetic relationship and a mummification process that suggested punishment, a good candidate for the pharaoh's son, Pentaweret, who was the only son to revolt against his father. [15] It was impossible to determine his cause of death. [15] Using Whit Athey's haplogroup predictor based on Y-STR values, both mummies were predicted to share the Y chromosomal haplogroup E1b1a1-M2 and 50% of their genetic material, which pointed to a father-son relationship. [15] Gad et al. (2021) indicates that Ramesses III and Unknown Man E, possibly Pentawere, carried haplogroup E1b1a. [16]

Kenya

At Deloraine Farm, in Nakuru County, Kenya, an iron metallurgist of the Iron Age carried haplogroups E1b1a1a1a1a/E-M58 and L5b1. [17] [18] Numerous individuals carrying various subclades of haplogroup E-M2 were found in the Lamu Archipelago and Taita Taveta. The individuals largely originate from the 1500s and 1600s CE, though dating extends into the 1800s and 1900s. [19]

Tanzania

At Songo Mnara, in Tanzania, an individual, dated between 1418 cal CE and 1450 cal CE, carried haplogroups E1b1a1~ and L3e2b. [19]

At Lindi, in Tanzania, an individual, dated between 1511 cal CE and 1664 cal CE, carried haplogroups E1b1a1a1a2a1a3a1d~ and L0a1a2. [19]

Outside of Africa

France

E1b1a1a1a1c2c (CTS3274) was found in 2020 in a Middle Neolithic sample from Noyen-sur-Seine. [20] This is the earliest example of E1b1a found anywhere in the world.

Iran

E1b1a1a1c2b1 (aka Z6005) in Mesolithic Iran (12,000 to 8,000 BC)

Mexico

At a San Jose de los Naturales Royal Hospital burial site, in Mexico City, Mexico, three enslaved individuals of West African and Southern African ancestry carrying haplogroup E-M2, dated between 1436 CE and 1626 CE, were found. [21] Human leukocyte antigen alleles further confirm that the individuals were of Sub-Saharan African origin. [22]

Portugal

At Cabeço da Amoreira, in Portugal, an enslaved West African man, who may have been from the Senegambian coastal region of Gambia, Mauritania, or Senegal, and carried haplogroups E1b1a and L3b1a, was buried among shell middens between the 16th century CE and the 18th century CE. [23]

Saint Helena

In Saint Helena, 20 freed Africans, [24] [25] who were dated to the 19th century CE, [24] were also of western Central African [24] [26] [27] (e.g., Bantu peoples of Gabon and Angola) ancestry and carried haplogroup E-M2. [24] [28] [29] Based on those who were present among enlaved Africans, the ratio of males-to-females supports the conclusion of there being a strong selection bias for males in the latter period of the Trans-Atlantic Slave Trade. [24] [30] [31] Consequently, due to this study on the freed Africans of Saint Helena, among other studies, greater genetic insights have been made into the Trans-Atlantic Slave Trade and its effects on the demographics of Africa. [32]

Spain

In Granada, a Muslim (Moor) of the Cordoba Caliphate, [33] who was of haplogroups E1b1a1 and H1+16189, [34] [35] as well as estimated to date between 900 CE and 1000 CE, and a Morisco, [33] who was of haplogroup L2e1, [34] [35] as well as estimated to date between 1500 CE and 1600 CE, were both found to be of West African (i.e., Gambian) and Iberian descent. [33]

United States of America

At Avery’s Rest, in Chesapeake, Delaware, 3 out of 11 individuals were African Americans, who were dated between 1675 CE and 1725 CE; one was of West African ancestry and carried haplogroups E1b1a-CTS2447 and L3e3b, another was of western Central African Bantu-speaking ancestry and carried E1b1a-Z5974 and L0a1a2, and another was of West African and East African ancestry and carried E1b1a-Z5974 and L3d2. [36]

At Catoctin Furnace African American Cemetery, in Catoctin Furnace, Maryland, there were 27 African Americans found who were dated between 1774 CE and 1850 CE. [37] [38]

At an Anson Street burial site, in Charleston, South Carolina, there were 18 African Americans found who were dated to the 18th century CE. [39]

Medical DNA

Sickle Cell

Amid the Green Sahara, the mutation for sickle cell originated in the Sahara [40] or in the northwest forest region of western Central Africa (e.g., Cameroon) [40] [41] by at least 7,300 years ago, [40] [41] though possibly as early as 22,000 years ago. [42] [41] The ancestral sickle cell haplotype to modern haplotypes (e.g., Cameroon/Central African Republic and Benin/Senegal haplotypes) may have first arose in the ancestors of modern West Africans, bearing haplogroups E1b1a1-L485 and E1b1a1-U175 or their ancestral haplogroup E1b1a1-M4732. [40] West Africans bearing the Benin sickle cell haplotype may have migrated through the northeastern region of Africa into the western region of Arabia. [40] West Africans bearing the Senegal sickle cell haplotype [43] [40] may have migrated into Mauritania (77% modern rate of occurrence) and Senegal (100%); they may also have migrated across the Sahara, into North Africa, and from North Africa, into Southern Europe, Turkey, and a region near northern Iraq and southern Turkey. [43] Some may have migrated into and introduced the Senegal and Benin sickle cell haplotypes into Basra, Iraq, where both occur equally. [43] West Africans bearing the Benin sickle cell haplotype, may have migrated into the northern region of Iraq (69.5%), Jordan (80%), Lebanon (73%), Oman (52.1%), and Egypt (80.8%). [43]

Distribution

E-M2's frequency and diversity are highest in West Africa. Within Africa, E-M2 displays a west-to-east as well as a south-to-north clinal distribution. In other words, the frequency of the haplogroup decreases as one moves from western and southern Africa toward the eastern and northern parts of Africa. [44]

Incidence of E-M2
Population groupfrequencyReferences
Bamileke 96%-100% [44] [45]
Ewe 97% [11]
Ga 97% [11]
Hutu 94.2% [44]
Yoruba 93.1% [46]
Tutsi 80% [44]
Fante 84% [11]
Mandinka 79%–87% [10] [11]
Ovambo 82% [11]
Senegalese 81% [47]
Ganda 77% [11]
Bijagós 76% [10]
Balanta 73% [10]
Fula 73% [10]
Kikuyu 73% [11]
Herero 71% [11]
Nalú 71% [10]

Populations in Northwest Africa, central Eastern Africa and Madagascar have tested at more moderate frequencies.

Incidence of E-M2
Population groupfrequencyReferences
Tuareg from Tânout, Niger44.4% (8/18 subjects) [48]
Comorian Shirazi 41% [49]
Tuareg from Gorom-Gorom, Burkina Faso16.6% (3/18) [48]
Tuareg from Gossi, Mali9.1% (1/9) [48]
Cape Verdeans 15.9% (32/201) [50]
Maasai 15.4% (4/26) [11]
Luo 66% (6/9) [11]
Iraqw 11.11% (1/9) [11]
Comoros 23.46% (69/294) [49]
Merina people (also called Highlanders)44% (4/9) [51]
Antandroy 69.6% (32/46) [51]
Antanosy 48.9% (23/47) [51]
Antaisaka 37.5% (3/8) [51]

E-M2 is found at low to moderate frequencies in North Africa, and Northeast Africa. Some of the lineages found in these areas are possibly due to the Bantu expansion or other migrations. [44] [52] However, the discovery in 2011 of the E-M2 marker that predates E-M2 has led Trombetta et al. to suggest that E-M2 may have originated in East Africa. [5] In Eritrea and most of Ethiopia (excluding the Anuak), E-V38 is usually found in the form of E-M329, which is autochthonous, while E-M2 generally indicates Bantu migratory origins. [53] [54] [55]

Incidence of E-M2
Population groupfrequencyReferences
Tuareg from Al Awaynat and Tahala, Libya46.5% (20/43) [lower-alpha 1] [56]
Oran, Algeria 8.6% (8/93) [57]
Berbers, southern and north-central Morocco9.5% (6/63) 5.8% (4/69) [58] [lower-alpha 2] [59]
Moroccan Arabs 6.8% (3/44) 1.9% (1/54) [58] [59]
Saharawis 3.5% (1/29) [58]
Egyptians 1.4% (2/147), 0% (0/73), 8.33% (3/36) [44] [60] [61]
Tunisians 1.4% (2/148) [61]
Sudanese (may include Hausa migrants)0.9% (4/445) [62]
Somalia nationals (may include Bantu minorities )1.5% (3/201) [52]

Outside of Africa, E-M2 has been found at low frequencies. The clade has been found at low frequencies in West Asia. A few isolated occurrences of E-M2 have also been observed among populations in Southern Europe, such as Croatia, Malta, Spain and Portugal. [63] [64] [65] [66]

Incidence of E-M2 in Asia
Population groupfrequencyReferences
Bahrain 8.6% (46/562)

[67]

Saudi Arabians 6.6% (11/157)

[68]

Omanis 6.6% (8/121) [44]
Emiratis 5.5% (9/164) [69]
Yemenis 4.8% (3/62) [69]
Cypriots 3.2% (2/62) [66]
Southern Iranians 1.7% (2/117) [70]
Jordanians 1.4% (2/139) [71]
Sri Lanka 1.4% (9/638) [72]
Aeolian Islands, Italy 1.2% (1/81) [73]

The Trans-Atlantic slave trade brought people to North America, Central America and South America including the Caribbean. Consequently, the haplogroup is often observed in the United States populations in men who self-identify as African Americans. [74] It has also been observed in a number of populations in Mexico, the Caribbean, Central America, and South America among people of African descent.

Incidence of E-M2 in populations of the Americas
Population groupfrequencyReferences
Americans 7.7–7.9% [lower-alpha 3] [74]
Cubans 9.8% (13/132) [75]
Dominicans 5.69% (2/26) [76]
Puerto Ricans 19.23% (5/26) [76]
Nicaraguans 5.5% (9/165) [77]
Several populations of Colombians 6.18% (69/1116) [78]
Alagoas, Brazil4.45% (11/247) [79]
Bahia, Brazil19% (19/100) [80]
Bahamians 58.63% (251/428) [81]

Subclades

E1b1a1

African spatial distribution of haplogroup E3a-M2. Rosa et al. (2007) Distribution of haplogroup e1b1a in Rosa 2007.jpg
African spatial distribution of haplogroup E3a-M2. Rosa et al. (2007)

E1b1a1 is defined by markers DYS271/M2/SY81, M291, P1/PN1, P189, P293, V43, and V95. Whilst E1b1a reaches its highest frequency of 81% in Senegal, only 1 of the 139 Senegalese that were tested showed M191/P86. [47] In other words, as one moves to West Africa from western Central Africa, the less subclade E1b1a1f is found. Cruciani et al. (2002) states: "A possible explanation might be that haplotype 24 chromosomes [E-M2*] were already present across the Sudanese belt when the M191 mutation, which defines haplotype 22, arose in central western Africa. Only then would a later demic expansion have brought haplotype 22 chromosomes from central western to western Africa, giving rise to the opposite clinal distributions of haplotypes 22 and 24." [45]

E1b1a1a1

E1b1a1a1 is commonly defined by M180/P88. The basal subclade is quite regularly observed in M2+ samples.

E1b1a1a1a

E1b1a1a1a is defined by marker M58. 5% (2/37) of the town Singa-Rimaïbé, Burkina Faso tested positive for E-M58. [45] 15% (10/69) of Hutus in Rwanda tested positive for M58. [44] Three South Africans tested positive for this marker. [12] One Carioca from Rio de Janeiro, Brazil tested positive for the M58 SNP. [82] The place of origin and age is unreported.

E1b1a1a1b

E1b1a1a1b is defined by M116.2, a private marker. A single carrier was found in Mali. [12] [lower-alpha 4]

E1b1a1a1c

E1b1a1a1c is defined by private marker M149. This marker was found in a single South African. [12]

E1b1a1a1d

E1b1a1a1d is defined by a private marker M155. It is known from a single carrier in Mali. [12]

E1b1a1a1e

E1b1a1a1e is defined by markers M10, M66, M156 and M195. Wairak people in Tanzania tested 4.6% (2/43) positive for E-M10. [44] E-M10 was found in a single person of the Lissongo group in the Central African Republic and two members in a "Mixed" population from the Adamawa region. [12]

E1b1a1a1f

E1b1a1a1f is defined by L485. The basal node E-L485* appears to be somewhat uncommon but has not been sufficiently tested in large populations. The ancestral L485 SNP (along with several of its subclades) was very recently discovered. Some of these SNPs have little or no published population data and/or have yet to receive nomenclature recognition by the YCC.

Veeramah et al. (2010) studies of the recombining portions of M191 positive Y chromosomes suggest that this lineage has "diffusely spread with multiple high frequency haplotypes implying a longer evolutionary period since this haplogroup arose". [84] The subclade E1b1a1a1f1a appears to express opposite clinal distributions to E1b1a1* in the West African Savanna region. Haplogroup E1b1a1a1f1a (E-M191) has a frequency of 23% in Cameroon (where it represents 42% of haplotypes carrying the DYS271 mutation or E-M2), 13% in Burkina Faso (16% of haplotypes carrying the M2/DYS271 mutation) and only 1% in Senegal. [47] Similarly, while E1b1a reaches its highest frequency of 81% in Senegal, only 1 of the 139 Senegalese that were tested showed M191/P86. [47] In other words, as one moves to West Africa from western Central Africa, the less subclade E1b1a1f is found. "A possible explanation might be that haplotype 24 chromosomes [E-M2*] were already present across the Sudanese belt when the M191 mutation, which defines haplotype 22, arose in central western Africa. Only then would a later demic expansion have brought haplotype 22 chromosomes from central western to western Africa, giving rise to the opposite clinal distributions of haplotypes 22 and 24." [45]

E1b1a1a1g

E1b1a1a1g (YCC E1b1a8) is defined by marker U175. The basal E-U175* is extremely rare. Montano et al. (2011) only found one out of 505 tested African subjects who was U175 positive but negative for U209. [9] Brucato et al. found similarly low frequencies of basal E-U175* in subjects in the Ivory Coast and Benin. Veeramah et al. (2010) found U175 in tested Annang (45.3%), Ibibio (37%), Efik (33.3%), and Igbo (25.3%) but did not test for U209. [84]

The supposed "Bantu haplotype" found in E-U175 carriers is "present at appreciable frequencies in other Niger–Congo languages speaking peoples as far west as Guinea-Bissau". [84] This is the modal haplotype of STR markers that is common in carriers of E-U175. [lower-alpha 5]

E-U175 haplotypeDYS19DYS388DYS390DYS391DYS392DYS393
151221101113

E1b1a1a1g has several subclades.

E1b1a1a1h

E1b1a1a1h is defined by markers P268 and P269. It was first reported in a person from the Gambia. [91]

Phylogenetics

Phylogenetic history

Prior to 2002, there were in academic literature at least seven naming systems for the Y-Chromosome Phylogenetic tree. This led to considerable confusion. In 2002, the major research groups came together and formed the Y-Chromosome Consortium (YCC). They published a joint paper that created a single new tree that all agreed to use. Later, a group of citizen scientists with an interest in population genetics and genetic genealogy formed a working group to create an amateur tree aiming at being above all timely. The table below brings together all of these works at the point of the landmark 2002 YCC Tree. This allows a researcher reviewing older published literature to quickly move between nomenclatures.

YCC 2002/2008 (Shorthand)(α)(β)(γ)(δ)(ε)(ζ)(η)YCC 2002 (Longhand)YCC 2005 (Longhand)YCC 2008 (Longhand)YCC 2010r (Longhand)ISOGG 2006ISOGG 2007ISOGG 2008ISOGG 2009ISOGG 2010ISOGG 2011ISOGG 2012
E-P29 21III3A13Eu3H2BE*EEEEEEEEEE
E-M33 21III3A13Eu3H2BE1*E1E1aE1aE1E1E1aE1aE1aE1aE1a
E-M44 21III3A13Eu3H2BE1aE1aE1a1E1a1E1aE1aE1a1E1a1E1a1E1a1E1a1
E-M75 21III3A13Eu3H2BE2aE2E2E2E2E2E2E2E2E2E2
E-M54 21III3A13Eu3H2BE2bE2bE2bE2b1-------
E-P2 25III414Eu3H2BE3*E3E1bE1b1E3E3E1b1E1b1E1b1E1b1E1b1
E-M2 8III515Eu2H2BE3a*E3aE1b1E1b1aE3aE3aE1b1aE1b1aE1b1aE1b1a1E1b1a1
E-M58 8III515Eu2H2BE3a1E3a1E1b1a1E1b1a1E3a1E3a1E1b1a1E1b1a1E1b1a1E1b1a1a1aE1b1a1a1a
E-M116.2 8III515Eu2H2BE3a2E3a2E1b1a2E1b1a2E3a2E3a2E1b1a2E1b1a2E1ba12removedremoved
E-M149 8III515Eu2H2BE3a3E3a3E1b1a3E1b1a3E3a3E3a3E1b1a3E1b1a3E1b1a3E1b1a1a1cE1b1a1a1c
E-M154 8III515Eu2H2BE3a4E3a4E1b1a4E1b1a4E3a4E3a4E1b1a4E1b1a4E1b1a4E1b1a1a1g1cE1b1a1a1g1c
E-M155 8III515Eu2H2BE3a5E3a5E1b1a5E1b1a5E3a5E3a5E1b1a5E1b1a5E1b1a5E1b1a1a1dE1b1a1a1d
E-M10 8III515Eu2H2BE3a6E3a6E1b1a6E1b1a6E3a6E3a6E1b1a6E1b1a6E1b1a6E1b1a1a1eE1b1a1a1e
E-M35 25III414Eu4H2BE3b*E3bE1b1b1E1b1b1E3b1E3b1E1b1b1E1b1b1E1b1b1removedremoved
E-M78 25III414Eu4H2BE3b1*E3b1E1b1b1aE1b1b1a1E3b1aE3b1aE1b1b1aE1b1b1aE1b1b1aE1b1b1a1E1b1b1a1
E-M148 25III414Eu4H2BE3b1aE3b1aE1b1b1a3aE1b1b1a1c1E3b1a3aE3b1a3aE1b1b1a3aE1b1b1a3aE1b1b1a3aE1b1b1a1c1E1b1b1a1c1
E-M81 25III414Eu4H2BE3b2*E3b2E1b1b1bE1b1b1b1E3b1bE3b1bE1b1b1bE1b1b1bE1b1b1bE1b1b1b1E1b1b1b1a
E-M107 25III414Eu4H2BE3b2aE3b2aE1b1b1b1E1b1b1b1aE3b1b1E3b1b1E1b1b1b1E1b1b1b1E1b1b1b1E1b1b1b1aE1b1b1b1a1
E-M165 25III414Eu4H2BE3b2bE3b2bE1b1b1b2E1b1b1b1b1E3b1b2E3b1b2E1b1b1b2aE1b1b1b2aE1b1b1b2aE1b1b1b2aE1b1b1b1a2a
E-M123 25III414Eu4H2BE3b3*E3b3E1b1b1cE1b1b1cE3b1cE3b1cE1b1b1cE1b1b1cE1b1b1cE1b1b1cE1b1b1b2a
E-M34 25III414Eu4H2BE3b3a*E3b3aE1b1b1c1E1b1b1c1E3b1c1E3b1c1E1b1b1c1E1b1b1c1E1b1b1c1E1b1b1c1E1b1b1b2a1
E-M136 25III414Eu4H2BE3ba1E3b3a1E1b1b1c1aE1b1b1c1a1E3b1c1aE3b1c1aE1b1b1c1a1E1b1b1c1a1E1b1b1c1a1E1b1b1c1a1E1b1b1b2a1a1

Research publications

The following research teams per their publications were represented in the creation of the YCC tree.

Phylogenetic trees

This phylogenetic tree of haplogroup subclades is based on the Y-Chromosome Consortium (YCC) 2008 Tree, [91] the ISOGG Y-DNA Haplogroup E Tree, [7] and subsequent published research.

See also

Genetics

Y-DNA E subclades

Y-DNA backbone tree

Notes

  1. All were positive for U175.
  2. The publication refers to E-V38 as H22.
  3. E-M2 is approximately 7.7–7.9% of total US male population.
  4. The publication transposes M116.2 with M116.1 in Table 1.
  5. The YCAII STR marker value of 19–19 is also usually indicative of U175.
  6. DYS271/M2/SY81, P1/PN1, P189, P293, and M291 appear to form E1b1a1*. L576 forms a subclade immediately after the previously mentioned SNPs. L576 gave rise to a deeper subclade of M180/P88, P182, L88.3, L86, and PAGES0006. From this subclade, all the major subclades (i.e. E-U175 and E-L485) of E1b1a evolved. The exact position of V43 and V95 within these three subclades and E1b1a1a1b (M116.2), E1b1a1a1c (M149), and E1b1a1a1d (M155) remains uncertain.

Related Research Articles

<span class="mw-page-title-main">Haplogroup G-M201</span> Human Y chromosome DNA grouping common in western Eurasia

Haplogroup G (M201) is a human Y-chromosome haplogroup. It is one of two branches of the parent haplogroup GHIJK, the other being HIJK.

<span class="mw-page-title-main">Haplogroup J (Y-DNA)</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M304, also known as J, is a human Y-chromosome DNA haplogroup. It is believed to have evolved in Western Asia. The clade spread from there during the Neolithic, primarily into North Africa, the Horn of Africa, the Socotra Archipelago, the Caucasus, Europe, Anatolia, Central Asia, South Asia, and Southeast Asia.

<span class="mw-page-title-main">Haplogroup E-M215</span> Human Y-chromosome DNA haplogroup

E-M215 or E1b1b, formely known as E3b, is a major human Y-chromosome DNA haplogroup. E-M215 has two basal branches, E-M35 and E-M281. E-M35 is primarily distributed in North Africa and the Horn of Africa, and occurs at moderate frequencies in the Middle East, Europe, and Southern Africa. E-M281 occurs at a low frequency in Ethiopia.

Haplogroup A is a human Y-chromosome DNA haplogroup, which includes all living human Y chromosomes. Bearers of extant sub-clades of haplogroup A are almost exclusively found in Africa, in contrast with haplogroup BT, bearers of which participated in the Out of Africa migration of early modern humans. The known branches of haplogroup A are A00, A0, A1a, and A1b1; these branches are only very distantly related, and are not more closely related to each other than they are to haplogroup BT.

Haplogroup E-M96 is a human Y-chromosome DNA haplogroup. It is one of the two main branches of the older and ancestral haplogroup DE, the other main branch being haplogroup D. The E-M96 clade is divided into two main subclades: the more common E-P147, and the less common E-M75.

Haplogroup E-V38, also known as E1b1a-V38, is a major human Y-chromosome DNA haplogroup. E-V38 is primarily distributed in Africa. E-V38 has two basal branches, E-M329 and E-M2. E-M329 is a subclade mostly found in East Africa. E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of African Great Lakes; it also occurs at moderate frequencies in North Africa, West Asia, and Southern Europe.

<span class="mw-page-title-main">Haplogroup M-P256</span> Human Y chromosome DNA grouping common in New Guinea

Haplogroup M, also known as M-P256 and Haplogroup K2b1b is a Y-chromosome DNA haplogroup. M-P256 is a descendant haplogroup of Haplogroup K2b1, and is believed to have first appeared between 32,000 and 47,000 years ago.

<span class="mw-page-title-main">Human Y-chromosome DNA haplogroup</span> Human DNA groupings

In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by mutations in the non-recombining portions of DNA from the male-specific Y chromosome. Many people within a haplogroup share similar numbers of short tandem repeats (STRs) and types of mutations called single-nucleotide polymorphisms (SNPs).

<span class="mw-page-title-main">Haplogroup J-M267</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M267, also commonly known as Haplogroup J1, is a subclade (branch) of Y-DNA haplogroup J-P209 along with its sibling clade haplogroup J-M172.

In human genetics, Haplogroup O-M268, also known as O1b, is a Y-chromosome DNA haplogroup. Haplogroup O-M268 is a primary subclade of haplogroup O-F265, itself a primary descendant branch of Haplogroup O-M175.

<span class="mw-page-title-main">Haplogroup R1b</span> Type of paternal lineage

Haplogroup R1b (R-M343), previously known as Hg1 and Eu18, is a human Y-chromosome haplogroup.

Haplogroup E-P147 is a human Y-chromosome DNA haplogroup. Haplogroup E-P147, along with the less common haplogroup E-M75, is one of the two main branches of the older haplogroup E-M96. The E-P147 clade is commonly observed throughout Africa and is divided into two subclades: the less common, haplogroup E-M132, and the more common, haplogroup E-P177.

Haplogroup E-M132, formerly known as E-M33 (E1a), is a human Y-chromosome DNA haplogroup. Along with E-P177, it is one of the two main branches of the older E-P147 paternal clade. E-M132 is divided into two primary sub-branches, E-M44 and E-Z958, with many descendant subclades.

Haplogroup E-P177 is a human Y-chromosome DNA haplogroup. E-P177 has two known subclades, which are haplogroup E-P2 and haplogroup E-P75.

Haplogroup E-M75 is a human Y-chromosome DNA haplogroup. Along with haplogroup E-P147, it is one of the two main branches of the older haplogroup E-M96.

Haplogroup E-P2, also known as E1b1, is a human Y-chromosome DNA haplogroup. E-P2 has two basal branches, E-V38 and E-M215. E-P2 had an ancient presence in East Africa and the Levant; presently, it is primarily distributed in Africa where it may have originated, and occurs at lower frequencies in the Middle East and Europe.

In human population genetics, Y-Chromosome haplogroups define the major lineages of direct paternal (male) lines back to a shared common ancestor in Africa. Men in the same haplogroup share a set of differences, or markers, on their Y-Chromosome, which distinguish them from men in other haplogroups. These UEPs, or markers used to define haplogroups, are SNP mutations. Y-Chromosome Haplogroups all form "family trees" or "phylogenies", with both branches or sub-clades diverging from a common haplogroup ancestor, and also with all haplogroups themselves linked into one family tree which traces back ultimately to the most recent shared male line ancestor of all men alive today, called in popular science Y Chromosome Adam.

E-Z827, also known as E1b1b1b, is a major human Y-chromosome DNA haplogroup. It is the parent lineage to the E-Z830 and E-V257 subclades, and defines their common phylogeny. The former is predominantly found in the Middle East; the latter is most frequently observed in North Africa, with its E-M81 subclade observed among the ancient Guanche natives of the Canary Islands. E-Z827 is also found at lower frequencies in Europe, and in isolated parts of Southeast Africa.

Haplogroup A-L1085, also known as haplogroup A0-T is a human Y-DNA haplogroup. It is part of the paternal lineage of almost all humans alive today. The SNP L1085 has played two roles in population genetics: firstly, most Y-DNA haplogroups have diverged from it and; secondly, it defines the undiverged basal clade A-L1085*.

<span class="mw-page-title-main">Haplogroup E-M329</span> Human Y-chromosome DNA haplogroup

Haplogroup E-M329, also known as E1b1a2, is a human Y-chromosome DNA haplogroup. E-M329 is mostly found in East Africa.

References

  1. D'Atanasio E, Trombetta B, Bonito M, Finocchio A, Di Vito G, Seghizzi M; et al. (2018). "The peopling of the last Green Sahara revealed by high-coverage resequencing of trans-Saharan patrilineages". Genome Biol. 19 (1): 20. doi: 10.1186/s13059-018-1393-5 . PMC   5809971 . PMID   29433568.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 "E-M2 YTree".
  3. 1 2 Trombetta, Beniamino; et al. (2015). "Phylogeographic Refinement and Large Scale Genotyping of Human Y Chromosome Haplogroup E Provide New Insights into the Dispersal of Early Pastoralists in the African Continent". Genome Biology and Evolution. 7 (7). Genome Biol Evol: 1940–1950. doi:10.1093/gbe/evv118. PMC   4524485 . PMID   26108492.
  4. 1 2 3 Shriner, Daniel; Rotimi, Charles (2018). "Whole-Genome-Sequence-Based Haplotypes Reveal Single Origin of the Sickle Allele during the Holocene Wet Phase". American Journal of Human Genetics. 102 (4). Am J Hum Genet: 547–556. doi:10.1016/j.ajhg.2018.02.003. PMC   5985360 . PMID   29526279.
  5. 1 2 3 Trombetta B, Cruciani F, Sellitto D, Scozzari R (January 2011). MacAulay V (ed.). "A new topology of the human Y chromosome haplogroup E1b1 (E-P2) revealed through the use of newly characterized binary polymorphisms". PLOS ONE. 6 (1): e16073. Bibcode:2011PLoSO...616073T. doi: 10.1371/journal.pone.0016073 . PMC   3017091 . PMID   21253605.
  6. "E-V43 YTree".
  7. 1 2 International Society of Genetic Genealogy (3 February 2010). "Y-DNA Haplogroup E and its Subclades – 2010" . Retrieved 17 December 2010.
  8. Adams, Jonathan. "Africa During the Last 150,000 Years". Archived from the original on 1 May 2006. Retrieved 26 January 2011.
  9. 1 2 3 4 5 6 7 8 Montano V, Ferri G, Marcari V, Batini C, Anyaele O, Destro-Bisol G, Comas D (July 2011). "The Bantu expansion revisited: a new analysis of Y chromosome variation in Central Western Africa". Molecular Ecology. 20 (13): 2693–708. doi:10.1111/j.1365-294X.2011.05130.x. PMID   21627702. S2CID   9951365.
  10. 1 2 3 4 5 6 Rosa A, Ornelas C, Jobling MA, Brehm A, Villems R (July 2007). "Y-chromosomal diversity in the population of Guinea-Bissau: a multiethnic perspective". BMC Evolutionary Biology. 7: 124. doi: 10.1186/1471-2148-7-124 . PMC   1976131 . PMID   17662131.
  11. 1 2 3 4 5 6 7 8 9 10 11 12 Wood ET, Stover DA, Ehret C, Destro-Bisol G, Spedini G, McLeod H, Louie L, Bamshad M, Strassmann BI, Soodyall H, Hammer MF (July 2005). "Contrasting patterns of Y chromosome and mtDNA variation in Africa: evidence for sex-biased demographic processes". European Journal of Human Genetics. 13 (7): 867–76. doi: 10.1038/sj.ejhg.5201408 . PMID   15856073.
  12. 1 2 3 4 5 6 Underhill PA, Passarino G, Lin AA, Shen P, Mirazón Lahr M, Foley RA, Oefner PJ, Cavalli-Sforza LL (January 2001). "The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations". Annals of Human Genetics. 65 (Pt 1): 43–62. doi: 10.1046/j.1469-1809.2001.6510043.x . PMID   11415522. S2CID   9441236.
  13. 1 2 3 Wang, Ke; et al. (2020). "Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa". Science Advances. 6 (24): eaaz0183. Bibcode:2020SciA....6..183W. doi:10.1126/sciadv.aaz0183. ISSN   2375-2548. OCLC   8616876709. PMC   7292641 . PMID   32582847. S2CID   219604401.
  14. 1 2 3 Wang, Ke; et al. (2020). "Supplementary Materials for Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa" (PDF). Science Advances. 6 (24): eaaz0183. Bibcode:2020SciA....6..183W. doi:10.1126/sciadv.aaz0183. ISSN   2375-2548. OCLC   8616876709. PMC   7292641 . PMID   32582847. S2CID   219604401.
  15. 1 2 3 Hawass, Zahi; et al. (2012). "Revisiting the harem conspiracy and death of Ramesses III: anthropological, forensic, radiological, and genetic study". British Medical Journal. 345: e8268. doi:10.1136/bmj.e8268. hdl: 10072/62081 . ISSN   0959-8138. OCLC   825973553. PMID   23247979. S2CID   206896841.
  16. Gad, Yehia Z; et al. (2021). "Insights from ancient DNA analysis of Egyptian human mummies: clues to disease and kinship". Human Molecular Genetics. 30 (R1): R24–R28. doi: 10.1093/hmg/ddaa223 . ISSN   0964-6906. OCLC   8681412353. PMID   33059357. S2CID   222824170.
  17. Prendergast, Mary E.; et al. (30 May 2019). "Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa". Science. 365 (6448). Bibcode:2019Sci...365.6275P. doi:10.1126/science.aaw6275. ISSN   0036-8075. OCLC   8176642048. PMC   6827346 . PMID   31147405. S2CID   171092468.
  18. Prendergast, Mary E.; et al. (30 May 2019). "Supplementary Materials for Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa" (PDF). Science. 365 (6448). Bibcode:2019Sci...365.6275P. doi:10.1126/science.aaw6275. ISSN   0036-8075. OCLC   8176642048. PMC   6827346 . PMID   31147405. S2CID   171092468.
  19. 1 2 3 Brielle, Esther S.; et al. (March 29, 2023). "Supplementary Data Files for Entwined African and Asian genetic roots of medieval peoples of the Swahili coast". Nature. 615 (7954): 866–873. Bibcode:2023Natur.615..866B. doi:10.1038/s41586-023-05754-w. ISSN   0028-0836. OCLC   9819552636. PMC   10060156 . PMID   36991187. S2CID   250534036.
  20. Brunel, Samantha; Bennett, E Andrew; Cardin, Laurent; Garraud, Damien; Barrand Emam, Hélène; Beylier, Alexandre; Boulestin, Bruno; Chenal, Fanny; Ciesielski, Elsa; Convertini, Fabien; Dedet, Bernard; Desbrosse-Degobertiere, Stéphanie; Desenne, Sophie (2020-06-09). "Ancient genomes from present-day France unveil 7,000 years of its demographic history". Proc Natl Acad Sci U S A. 117 (23): 12791–12798. doi:10.1073/pnas.1918034117. PMC   7293694 .
  21. Barquera, Rodrigo; et al. (8 June 2020). "Origin and Health Status of First-Generation Africans from Early Colonial Mexico". Current Biology. 30 (11): 2078–2091. doi: 10.1016/j.cub.2020.04.002 . hdl: 21.11116/0000-0007-30FE-5 . ISSN   0960-9822. OCLC   8586564917. PMID   32359431. S2CID   216662049.
  22. Fortes-Lima, Cesar A. (22 Nov 2021). "Disentangling the Impact of the Transatlantic Slave Trade in African Diaspora Populations from a Genomic Perspective". Africa, the Cradle of Human Diversity Cultural and Biological Approaches to Uncover African Diversity. Brill. pp. 305, 308–321. doi:10.1163/9789004500228_012. ISBN   978-90-04-50022-8. OCLC   1284920909. S2CID   244549408.
  23. Peyroteo-Stjerna, Rita; et al. (21 February 2022). "Multidisciplinary investigation reveals an individual of West African origin buried in a Portuguese Mesolithic shell midden four centuries ago". Journal of Archaeological Science: Reports. 42: 103370. doi: 10.1016/j.jasrep.2022.103370 . OCLC   1337974923. S2CID   247045502.
  24. 1 2 3 4 5 Sandoval-Velasco, Marcela; et al. (7 September 2023). "The ancestry and geographical origins of St Helena's liberated Africans" (PDF). American Journal of Human Genetics. 110 (9): 1590–1599. bioRxiv   10.1101/787515 . doi:10.1016/j.ajhg.2023.08.001. ISSN   0002-9297. OCLC   9998699240. PMC   10502851 . PMID   37683613. S2CID   261620937.
  25. Isable, Kendra Briana (August 2021). "Contributing to the Discussion: The Health of Enslaved Africans Through the Lens of Bioarchaeology". California State University, Northridge. p. 34.
  26. Fortes-Lima, Cesar; Verdu, Paul (17 December 2020). "Anthropological genetics perspectives on the transatlantic slave trade". Human Molecular Genetics. 30 (R1): R79–R87. doi: 10.1093/hmg/ddaa271 . PMID   33331897. S2CID   229301497.
  27. Callaway, Ewen (December 7, 2016). "What DNA reveals about St Helena's freed slaves". Nature. 540 (7632): 184–187. doi: 10.1038/540184a . S2CID   89162808.
  28. Sandoval-Velasco, Marcela; et al. (7 September 2023). "Data S1. Tables S1–S13: The ancestry and geographical origins of St Helena's liberated Africans". American Journal of Human Genetics. 110 (9): 1590–1599. bioRxiv   10.1101/787515 . doi: 10.1016/j.ajhg.2023.08.001 . ISSN   0002-9297. OCLC   9998699240. PMC   10502851 . PMID   37683613. S2CID   261620937.
  29. Fleskes, Raquel E.; et al. (2019). "Ancient DNA and bioarchaeological perspectives on European and African diversity and relationships on the colonial Delaware frontier". American Journal of Physical Anthropology. 170 (2): 232–245. doi:10.1002/ajpa.23887. PMID   31270812. S2CID   195796747.
  30. Racimo, Fernando; et al. (2020). "Beyond broad strokes: sociocultural insights from the study of ancient genomes" (PDF). Nature Reviews Genetics. 21 (6): 355–366. doi:10.1038/s41576-020-0218-z. ISSN   1471-0056. PMID   32127690. S2CID   207780165.
  31. Callaway, Ewen (November 5, 2019). "Genomes trace origins of enslaved people who died on remote island". Nature. 575 (18): 18. Bibcode:2019Natur.575...18C. doi:10.1038/d41586-019-03152-9. PMID   31690869. S2CID   207896705.
  32. Abel, Sarah; Schroeder, Hannes (October 2020). "From Country Marks to DNA Markers: The Genomic Turn in the Reconstruction of African Identities". Current Anthropology. 61: S206. doi:10.1086/709550. S2CID   224962523.
  33. 1 2 3 Olalde, Iñigo; et al. (2019). "Supplementary Materials for The genomic history of the Iberian Peninsula over the past 8000 years" (PDF). Science. 363 (6432): 1230–1234. Bibcode:2019Sci...363.1230O. doi:10.1126/science.aav4040. hdl:10261/207967. ISSN   0036-8075. OCLC   8024095449. PMC   6436108 . PMID   30872528. S2CID   78094214.
  34. 1 2 Olalde, Iñigo (2019). "The genomic history of the Iberian Peninsula over the past 8000 years, TablesS1-S5". Science. 363 (6432): 1230–1234. Bibcode:2019Sci...363.1230O. doi:10.1126/science.aav4040. hdl:10261/207967. ISSN   0036-8075. OCLC   8024095449. PMC   6436108 . PMID   30872528. S2CID   78094214.
  35. 1 2 Olalde, Iñigo (2019). "Materials/Methods, Supplementary Text, Tables, Figures, and/or References". Science. 363 (6432): 1230–1234. Bibcode:2019Sci...363.1230O. doi:10.1126/science.aav4040. ISSN   0036-8075. OCLC   8024095449. PMC   6436108 . PMID   30872528. S2CID   78094214.
  36. Fleskes, Raquel E.; et al. (June 5, 2023). "Historical genomes elucidate European settlement and the African diaspora in Delaware". Current Biology. 33 (11): 2350–2358.e7. doi:10.1016/j.cub.2023.04.069. ISSN   0960-9822. OCLC   9874997102. PMID   37207647. S2CID   258767664.
  37. Harney, Éadaoin; et al. (2023). "The genetic legacy of African Americans from Catoctin Furnace" (PDF). Science. 381 (500): eade4995. doi:10.1126/science.ade4995. PMID   37535739. S2CID   260440898.
  38. Harney, Éadaoin; et al. (2023). "Supplementary Materials for The genetic legacy of African Americans from Catoctin Furnace" (PDF). Science. 381 (500): eade4995. doi:10.1126/science.ade4995. PMID   37535739. S2CID   260440898.
  39. Fleskes, Raquel E.; et al. (2023). "Community-engaged ancient DNA project reveals diverse origins of 18th-century African descendants in Charleston, South Carolina". Anthropology. 120 (3): e2201620120. doi:10.1073/pnas.2201620120. PMC   9934026 . PMID   36623185. S2CID   255568252.
  40. 1 2 3 4 5 6 Shriner, Daniel; Rotimi, Charles N. (2018). "Whole-Genome-Sequence-Based Haplotypes Reveal Single Origin of the Sickle Allele during the Holocene Wet Phase". American Journal of Human Genetics. 102 (4): 547–556. doi:10.1016/j.ajhg.2018.02.003. ISSN   0002-9297. OCLC   7352712531. PMC   5985360 . PMID   29526279. S2CID   4636822.
  41. 1 2 3 Esoh, Kevin; Wonkam, Ambroise (2021). "Evolutionary history of sickle-cell mutation: implications for global genetic medicine". Human Molecular Genetics. 30 (R1): R119–R128. doi:10.1093/hmg/ddab004. ISSN   0964-6906. OCLC   8885008275. PMC   8117455 . PMID   33461216. S2CID   231640941.
  42. Laval, Guillaume; et al. (2019). "Recent Adaptive Acquisition by African Rainforest Hunter-Gatherers of the Late Pleistocene Sickle-Cell Mutation Suggests Past Differences in Malaria Exposure". The American Journal of Human Genetics. 104 (3): 553–561. doi:10.1016/j.ajhg.2019.02.007. ISSN   0002-9297. OCLC   8015758034. PMC   6407493 . PMID   30827499. S2CID   73503158.
  43. 1 2 3 4 Yaseen, Noor Taha; et al. (2020). "Sickle ß-globin haplotypes among patients with sickle cell anemia in Basra, Iraq: A cross-sectional study". Iraqi Journal of Hematology. 9 (1): 23–29. doi: 10.4103/ijh.ijh_20_19 . ISSN   2072-8069. OCLC   8663256900. S2CID   216082225. Archived from the original on 3 June 2023.
  44. 1 2 3 4 5 6 7 8 9 Luis JR, Rowold DJ, Regueiro M, Caeiro B, Cinnioğlu C, Roseman C, Underhill PA, Cavalli-Sforza LL, Herrera RJ (March 2004). "The Levant versus the Horn of Africa: evidence for bidirectional corridors of human migrations". American Journal of Human Genetics. 74 (3): 532–44. doi:10.1086/382286. PMC   1182266 . PMID   14973781.
  45. 1 2 3 4 5 Cruciani F, Santolamazza P, Shen P, Macaulay V, Moral P, Olckers A, Modiano D, Holmes S, Destro-Bisol G, Coia V, Wallace DC, Oefner PJ, Torroni A, Cavalli-Sforza LL, Scozzari R, Underhill PA (May 2002). "A back migration from Asia to sub-Saharan Africa is supported by high-resolution analysis of human Y-chromosome haplotypes". American Journal of Human Genetics. 70 (5): 1197–214. doi:10.1086/340257. PMC   447595 . PMID   11910562.
  46. International HapMap Consortium (October 2005). "A haplotype map of the human genome". Nature. 437 (7063): 1299–320. Bibcode:2005Natur.437.1299T. doi:10.1038/nature04226. PMC   1880871 . PMID   16255080.
  47. 1 2 3 4 Semino O, Santachiara-Benerecetti AS, Falaschi F, Cavalli-Sforza LL, Underhill PA (January 2002). "Ethiopians and Khoisan share the deepest clades of the human Y-chromosome phylogeny". American Journal of Human Genetics. 70 (1): 265–8. doi:10.1086/338306. PMC   384897 . PMID   11719903.
  48. 1 2 3 Pereira L, Cerný V, Cerezo M, Silva NM, Hájek M, Vasíková A, Kujanová M, Brdicka R, Salas A (August 2010). "Linking the sub-Saharan and West Eurasian gene pools: maternal and paternal heritage of the Tuareg nomads from the African Sahel". European Journal of Human Genetics. 18 (8): 915–23. doi:10.1038/ejhg.2010.21. PMC   2987384 . PMID   20234393.
  49. 1 2 Msaidie S, Ducourneau A, Boetsch G, Longepied G, Papa K, Allibert C, Yahaya AA, Chiaroni J, Mitchell MJ (January 2011). "Genetic diversity on the Comoros Islands shows early seafaring as major determinant of human biocultural evolution in the Western Indian Ocean". European Journal of Human Genetics. 19 (1): 89–94. doi:10.1038/ejhg.2010.128. PMC   3039498 . PMID   20700146.
  50. Gonçalves R, Rosa A, Freitas A, Fernandes A, Kivisild T, Villems R, Brehm A (November 2003). "Y-chromosome lineages in Cabo Verde Islands witness the diverse geographic origin of its first male settlers". Human Genetics. 113 (6): 467–72. doi:10.1007/s00439-003-1007-4. hdl: 10400.13/3047 . PMID   12942365. S2CID   63381583.
  51. 1 2 3 4 Tofanelli S, Bertoncini S, Castrì L, Luiselli D, Calafell F, Donati G, Paoli G (September 2009). "On the origins and admixture of Malagasy: new evidence from high-resolution analyses of paternal and maternal lineages". Molecular Biology and Evolution. 26 (9): 2109–24. doi: 10.1093/molbev/msp120 . PMID   19535740.
  52. 1 2 Sanchez JJ, Hallenberg C, Børsting C, Hernandez A, Morling N (July 2005). "High frequencies of Y chromosome lineages characterized by E3b1, DYS19-11, DYS392-12 in Somali males". European Journal of Human Genetics. 13 (7): 856–66. doi: 10.1038/sj.ejhg.5201390 . PMID   15756297.
  53. Iacovacci G, D'Atanasio E, Marini O, Coppa A, Sellitto D, Trombetta B, Berti A, Cruciani F (March 2017). "Forensic data and microvariant sequence characterization of 27 Y-STR loci analyzed in four Eastern African countries". Forensic Science International. Genetics. 27: 123–131. doi:10.1016/j.fsigen.2016.12.015. PMID   28068531.
  54. Plaster et al. Y-DNA E subclades
  55. Plaster CA (2011-09-28). Variation in Y chromosome, mitochondrial DNA and labels of identity on Ethiopia. discovery.ucl.ac.uk (Doctoral). Retrieved 2018-06-27.
  56. Ottoni C, Larmuseau MH, Vanderheyden N, Martínez-Labarga C, Primativo G, Biondi G, Decorte R, Rickards O (May 2011). "Deep into the roots of the Libyan Tuareg: a genetic survey of their paternal heritage". American Journal of Physical Anthropology. 145 (1): 118–24. doi:10.1002/ajpa.21473. PMID   21312181.
  57. Robino C, Crobu F, Di Gaetano C, Bekada A, Benhamamouch S, Cerutti N, Piazza A, Inturri S, Torre C (May 2008). "Analysis of Y-chromosomal SNP haplogroups and STR haplotypes in an Algerian population sample". International Journal of Legal Medicine. 122 (3): 251–5. doi:10.1007/s00414-007-0203-5. PMID   17909833. S2CID   11556974.
  58. 1 2 3 Bosch E, Calafell F, Comas D, Oefner PJ, Underhill PA, Bertranpetit J (April 2001). "High-resolution analysis of human Y-chromosome variation shows a sharp discontinuity and limited gene flow between northwestern Africa and the Iberian Peninsula". American Journal of Human Genetics. 68 (4): 1019–29. doi:10.1086/319521. PMC   1275654 . PMID   11254456.
  59. 1 2 Cruciani F, La Fratta R, Santolamazza P, Sellitto D, Pascone R, Moral P, Watson E, Guida V, Colomb EB, Zaharova B, Lavinha J, Vona G, Aman R, Cali F, Akar N, Richards M, Torroni A, Novelletto A, Scozzari R (May 2004). "Phylogeographic analysis of haplogroup E3b (E-M215) y chromosomes reveals multiple migratory events within and out of Africa". American Journal of Human Genetics. 74 (5): 1014–22. doi:10.1086/386294. PMC   1181964 . PMID   15042509.
  60. Karafet TM, Zegura SL, Posukh O, Osipova L, Bergen A, Long J, Goldman D, Klitz W, Harihara S, de Knijff P, Wiebe V, Griffiths RC, Templeton AR, Hammer MF (March 1999). "Ancestral Asian source(s) of new world Y-chromosome founder haplotypes". American Journal of Human Genetics. 64 (3): 817–31. doi:10.1086/302282. PMC   1377800 . PMID   10053017.
  61. 1 2 Arredi B, Poloni ES, Paracchini S, Zerjal T, Fathallah DM, Makrelouf M, Pascali VL, Novelletto A, Tyler-Smith C (August 2004). "A predominantly neolithic origin for Y-chromosomal DNA variation in North Africa". American Journal of Human Genetics. 75 (2): 338–45. doi:10.1086/423147. PMC   1216069 . PMID   15202071.
  62. Hassan HY, Underhill PA, Cavalli-Sforza LL, Ibrahim ME (November 2008). "Y-chromosome variation among Sudanese: restricted gene flow, concordance with language, geography, and history". American Journal of Physical Anthropology. 137 (3): 316–23. doi:10.1002/ajpa.20876. PMID   18618658.
  63. Mršić G, Gršković B, Vrdoljak A, Popović M, Valpotić I, Anđelinović Š, Stenzl V, Ehler E, Urban L, Lacković G, Underhill P, Primorac D (July 2012). "Croatian national reference Y-STR haplotype database". Molecular Biology Reports. 39 (7). Branka Grskovic, Andro Vrdoljak, Maja Popovic, Ivica Valpotic, Simun Andelinovic, Vlastimil Stenzl, Edvard Ehler, Ludvik Urban, Gordana Lackovic, Peter Underhill, Dragan Primorac: 7727–41. doi:10.1007/s11033-012-1610-3. PMID   22391654. S2CID   18011987.
  64. Capelli C, Redhead N, Romano V, Calì F, Lefranc G, Delague V, et al. (March 2006). "Population structure in the Mediterranean basin: a Y chromosome perspective". Annals of Human Genetics. 70 (Pt 2): 207–25. doi:10.1111/j.1529-8817.2005.00224.x. hdl: 2108/37090 . PMID   16626331. S2CID   25536759.
  65. Flores C, Maca-Meyer N, González AM, Oefner PJ, Shen P, Pérez JA, Rojas A, Larruga JM, Underhill PA (October 2004). "Reduced genetic structure of the Iberian peninsula revealed by Y-chromosome analysis: implications for population demography". European Journal of Human Genetics. 12 (10): 855–63. doi: 10.1038/sj.ejhg.5201225 . PMID   15280900.
  66. 1 2 Adams SM, Bosch E, Balaresque PL, Ballereau SJ, Lee AC, Arroyo E, López-Parra AM, Aler M, Grifo MS, Brion M, Carracedo A, Lavinha J, Martínez-Jarreta B, Quintana-Murci L, Picornell A, Ramon M, Skorecki K, Behar DM, Calafell F, Jobling MA (December 2008). "The genetic legacy of religious diversity and intolerance: paternal lineages of Christians, Jews, and Muslims in the Iberian Peninsula". American Journal of Human Genetics. 83 (6): 725–36. doi:10.1016/j.ajhg.2008.11.007. PMC   2668061 . PMID   19061982.
  67. Noora R. Al-Snan1; Safia A. Messaoudi; Yahya M. Khubrani; Jon H. Wetton; Mark A. Jobling; Moiz Bakhiet (2020). "Geographical structuring and low diversity of paternal lineages in Bahrain shown by analysis of 27 Y-STRs". Molecular Genetics and Genomics. 295 (6): 1315–1324. doi:10.1007/s00438-020-01696-4. PMC   7524810 . PMID   32588126.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  68. Abu-Amero KK, Hellani A, González AM, Larruga JM, Cabrera VM, Underhill PA (September 2009). "Saudi Arabian Y-Chromosome diversity and its relationship with nearby regions". BMC Genetics. 10: 59. doi: 10.1186/1471-2156-10-59 . PMC   2759955 . PMID   19772609.
  69. 1 2 Cadenas AM, Zhivotovsky LA, Cavalli-Sforza LL, Underhill PA, Herrera RJ (March 2008). "Y-chromosome diversity characterizes the Gulf of Oman". European Journal of Human Genetics. 16 (3): 374–86. doi: 10.1038/sj.ejhg.5201934 . PMID   17928816.
  70. Regueiro M, Cadenas AM, Gayden T, Underhill PA, Herrera RJ (2006). "Iran: tricontinental nexus for Y-chromosome driven migration". Human Heredity. 61 (3): 132–43. doi:10.1159/000093774. PMID   16770078. S2CID   7017701.
  71. Al-Zahery N, Semino O, Benuzzi G, Magri C, Passarino G, Torroni A, Santachiara-Benerecetti AS (September 2003). "Y-chromosome and mtDNA polymorphisms in Iraq, a crossroad of the early human dispersal and of post-Neolithic migrations". Molecular Phylogenetics and Evolution. 28 (3): 458–72. doi:10.1016/S1055-7903(03)00039-3. PMID   12927131.
  72. Firasat S, Khaliq S, Mohyuddin A, Papaioannou M, Tyler-Smith C, Underhill PA, Ayub Q (January 2007). "Y-chromosomal evidence for a limited Greek contribution to the Pathan population of Pakistan". European Journal of Human Genetics. 15 (1): 121–6. doi:10.1038/sj.ejhg.5201726. PMC   2588664 . PMID   17047675.
  73. Cinnioğlu C, King R, Kivisild T, Kalfoğlu E, Atasoy S, Cavalleri GL, Lillie AS, Roseman CC, Lin AA, Prince K, Oefner PJ, Shen P, Semino O, Cavalli-Sforza LL, Underhill PA (January 2004). "Excavating Y-chromosome haplotype strata in Anatolia". Human Genetics. 114 (2): 127–48. doi:10.1007/s00439-003-1031-4. PMID   14586639. S2CID   10763736.
  74. 1 2 3 4 Sims LM, Garvey D, Ballantyne J (January 2007). "Sub-populations within the major European and African derived haplogroups R1b3 and E3a are differentiated by previously phylogenetically undefined Y-SNPs". Human Mutation. 28 (1): 97. doi: 10.1002/humu.9469 . PMID   17154278. S2CID   34556775.
  75. Mendizabal I, Sandoval K, Berniell-Lee G, Calafell F, Salas A, Martínez-Fuentes A, Comas D (July 2008). "Genetic origin, admixture, and asymmetry in maternal and paternal human lineages in Cuba". BMC Evolutionary Biology. 8: 213. doi: 10.1186/1471-2148-8-213 . PMC   2492877 . PMID   18644108.
  76. 1 2 Bryc K, Velez C, Karafet T, Moreno-Estrada A, Reynolds A, Auton A, Hammer M, Bustamante CD, Ostrer H (May 2010). "Colloquium paper: genome-wide patterns of population structure and admixture among Hispanic/Latino populations". Proceedings of the National Academy of Sciences of the United States of America. 107 Suppl 2 (Supplement 2): 8954–61. Bibcode:2010PNAS..107.8954B. doi: 10.1073/pnas.0914618107 . PMC   3024022 . PMID   20445096.
  77. Nuñez C, Baeta M, Sosa C, Casalod Y, Ge J, Budowle B, Martínez-Jarreta B (December 2010). "Reconstructing the population history of Nicaragua by means of mtDNA, Y-chromosome STRs, and autosomal STR markers". American Journal of Physical Anthropology. 143 (4): 591–600. doi:10.1002/ajpa.21355. PMID   20721944.
  78. Rojas W, Parra MV, Campo O, Caro MA, Lopera JG, Arias W, Duque C, Naranjo A, García J, Vergara C, Lopera J, Hernandez E, Valencia A, Caicedo Y, Cuartas M, Gutiérrez J, López S, Ruiz-Linares A, Bedoya G (September 2010). "Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers". American Journal of Physical Anthropology. 143 (1): 13–20. doi:10.1002/ajpa.21270. PMID   20734436.
  79. de Azevedo DA, da Silva LA, Gusmão L, de Carvalho EF (December 2009). "Analysis of Y chromosome SNPs in Alagoas, Northeastern Brazil". Forensic Science International: Genetics Supplement Series. 2 (1): 421–422. doi:10.1016/j.fsigss.2009.08.166.
  80. Nascimento E, Cerqueira E, Azevedo E, Freitas V, Azevedo D (December 2009). "The Africa male lineages of Bahia's people—Northeast Brazil: A preliminary SNPs study". Forensic Science International: Genetics Supplement Series. 2 (1): 349–350. doi:10.1016/j.fsigss.2009.07.010.
  81. Tanya M Simms 2011, The Peopling of the Bahamas: A Phylogeographical Perspective pg. 194
  82. 1 2 Hünemeier T, Carvalho C, Marrero AR, Salzano FM, Pena SD, Bortolini MC (June 2007). "Niger-Congo speaking populations and the formation of the Brazilian gene pool: mtDNA and Y-chromosome data". American Journal of Physical Anthropology. 133 (2): 854–67. doi:10.1002/ajpa.20604. PMID   17427922.
  83. 1 2 de Filippo C, Barbieri C, Whitten M, Mpoloka SW, Gunnarsdóttir ED, Bostoen K, Nyambe T, Beyer K, Schreiber H, de Knijff P, Luiselli D, Stoneking M, Pakendorf B (March 2011). "Y-chromosomal variation in sub-Saharan Africa: insights into the history of Niger-Congo groups". Molecular Biology and Evolution. 28 (3): 1255–69. doi:10.1093/molbev/msq312. PMC   3561512 . PMID   21109585.
  84. 1 2 3 4 Veeramah KR, Connell BA, Ansari Pour N, Powell A, Plaster CA, Zeitlyn D, Mendell NR, Weale ME, Bradman N, Thomas MG (March 2010). "Little genetic differentiation as assessed by uniparental markers in the presence of substantial language variation in peoples of the Cross River region of Nigeria". BMC Evolutionary Biology. 10: 92. doi: 10.1186/1471-2148-10-92 . PMC   2867817 . PMID   20356404.
  85. 1 2 Naidoo T, Schlebusch CM, Makkan H, Patel P, Mahabeer R, Erasmus JC, Soodyall H (September 2010). "Development of a single base extension method to resolve Y chromosome haplogroups in sub-Saharan African populations". Investigative Genetics. 1 (1): 6. doi: 10.1186/2041-2223-1-6 . PMC   2988483 . PMID   21092339.
  86. 1 2 Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (October 2010). "A map of human genome variation from population-scale sequencing". Nature. 467 (7319): 1061–73. Bibcode:2010Natur.467.1061T. doi:10.1038/nature09534. PMC   3042601 . PMID   20981092.
  87. Reynolds D, Squecco A. "Y-Chromosome Genome Comparison" . Retrieved 1 August 2011.
  88. Brucato N, Cassar O, Tonasso L, Tortevoye P, Migot-Nabias F, Plancoulaine S, Guitard E, Larrouy G, Gessain A, Dugoujon JM (October 2010). "The imprint of the Slave Trade in an African American population: mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana". BMC Evolutionary Biology. 10: 314. doi: 10.1186/1471-2148-10-314 . PMC   2973943 . PMID   20958967.
  89. Brito P, Carvalho M, Gomes V, Melo MM, Bogas V, Balsa F, et al. (December 2011). "Y-SNP analysis in an Angola population". Forensic Science International: Genetics Supplement Series. 3 (1): e369–e370. doi:10.1016/j.fsigss.2011.09.046.
  90. Underhill PA, Shen P, Lin AA, Jin L, Passarino G, Yang WH, Kauffman E, Bonné-Tamir B, Bertranpetit J, Francalacci P, Ibrahim M, Jenkins T, Kidd JR, Mehdi SQ, Seielstad MT, Wells RS, Piazza A, Davis RW, Feldman MW, Cavalli-Sforza LL, Oefner PJ (November 2000). "Y chromosome sequence variation and the history of human populations". Nature Genetics. 26 (3): 358–61. doi:10.1038/81685. PMID   11062480. S2CID   12893406.
  91. 1 2 Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF (May 2008). "New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree". Genome Research. 18 (5): 830–8. doi:10.1101/gr.7172008. PMC   2336805 . PMID   18385274.

Sources for conversion tables