Histidinol dehydrogenase

Last updated
Histidinol dehydrogenase
Identifiers
EC no. 1.1.1.23
CAS no. 9028-27-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Histidinol dehydrogenase
PDB 1k75 EBI.jpg
the l-histidinol dehydrogenase (hisd) structure implicates domain swapping and gene duplication.
Identifiers
SymbolHistidinol_dh
Pfam PF00815
Pfam clan CL0099
InterPro IPR012131
PROSITE PDOC00534
SCOP2 1k75 / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In enzymology, histidinol dehydrogenase (HIS4) (HDH) (EC 1.1.1.23) is an enzyme that catalyzes the chemical reaction

Contents

L-histidinol + 2 NAD+L-histidine + 2 NADH + 2 H+

Thus, the two substrates of this enzyme are L-histidinol and NAD+, whereas its 3 products are L-histidine, NADH, and H+.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is L-histidinol:NAD+ oxidoreductase. This enzyme is also called L-histidinol dehydrogenase.

Structure

In bacteria, HDH is a single chain polypeptide; in fungi it is the C-terminal domain of a multifunctional enzyme which catalyses three different steps of histidine biosynthesis; and in plants it is expressed as a nuclear encoded protein precursor which is exported to the chloroplast. [1] [2] [3]

Active site

Histidinol is held inside the active site thanks to a zinc ion, but the zinc ion does not participate in the catalysis otherwise. The zinc ion is held in place by His262, Gln259, Asp360 and His419 (which, in homodimeric histidinol dehydrogenases, comes from the other monomer). Histidinol itself is held in place by His327 and His367 from one moment unit and Glu414 from the other monomer unit. [3]

A Cys residue has been implicated in the catalytic mechanism of the second oxidative step. [4] However, according to newer studies with histidinol dehydrogenase from E. coli , the mechanism is catalyzed by four bases, B1-B4. His327 acts as the first base, deprotonating histidinol's hydroxyl group. Concomitantly, hydride is abstracted from histidinol by NAD+, which is then exchanged for a second NAD+ molecule. Glu325 acts as the second base, deprotonating a molecule of water, which then attacks histidinol. At the same time, His327 (now protonated) donates a proton to the aldehydic oxygen, which results in a gem-diol. After then, His327 again deprotonates one of the hydroxyl groups and NAD+ abstracts a proton from the reactive carbon atom. This series of steps oxidizes the hydroxyl group to a carboxylic acid. [3]

Function

Histidinol dehydrogenase catalyzes the terminal step in the biosynthesis of histidine in bacteria, fungi, and plants, the four-electron oxidation of L-histidinol to histidine.

In 4-electron dehydrogenases, a single active site catalyses 2 separate oxidation steps: oxidation of the substrate alcohol to an intermediate aldehyde; and oxidation of the aldehyde to the product acid, in this case His. [4] The reaction proceeds via a tightly- or covalently-bound intermediate, and requires the presence of 2 NAD molecules. [4] By contrast with most dehydrogenases, the substrate is bound before the NAD coenzyme. [4]

Co-regulation of the gene

Histodinol dehydrogenase gene (HIS4) has been shown co-regulating the adjacent gene while it is under amino acids selective pressure. [5]

Structural studies

As of late 2007, 4 structures have been solved for this class of enzymes, with PDB accession codes 1K75, 1KAE, 1KAH, and 1KAR.

Related Research Articles

<span class="mw-page-title-main">Histidine</span> Chemical compound

Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the deprotonated –COO form under biological conditions), and an imidazole side chain (which is partially protonated), classifying it as a positively charged amino acid at physiological pH. Initially thought essential only for infants, it has now been shown in longer-term studies to be essential for adults also. It is encoded by the codons CAU and CAC.

<span class="mw-page-title-main">Alcohol dehydrogenase</span> Group of dehydrogenase enzymes

Alcohol dehydrogenases (ADH) (EC 1.1.1.1) are a group of dehydrogenase enzymes that occur in many organisms and facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of nicotinamide adenine dinucleotide (NAD+) to NADH. In humans and many other animals, they serve to break down alcohols that are otherwise toxic, and they also participate in the generation of useful aldehyde, ketone, or alcohol groups during the biosynthesis of various metabolites. In yeast, plants, and many bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD+.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide</span> Chemical compound which is reduced and oxidized

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.

<span class="mw-page-title-main">Malate dehydrogenase</span> Class of enzymes

Malate dehydrogenase (EC 1.1.1.37) (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD+ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. Other malate dehydrogenases, which have other EC numbers and catalyze other reactions oxidizing malate, have qualified names like malate dehydrogenase (NADP+).

The branched-chain α-ketoacid dehydrogenase complex is a multi-subunit complex of enzymes that is found on the mitochondrial inner membrane. This enzyme complex catalyzes the oxidative decarboxylation of branched, short-chain alpha-ketoacids. BCKDC is a member of the mitochondrial α-ketoacid dehydrogenase complex family comprising pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, key enzymes that function in the Krebs cycle.

Acyl-CoA dehydrogenases (ACADs) are a class of enzymes that function to catalyze the initial step in each cycle of fatty acid β-oxidation in the mitochondria of cells. Their action results in the introduction of a trans double-bond between C2 (α) and C3 (β) of the acyl-CoA thioester substrate. Flavin adenine dinucleotide (FAD) is a required co-factor in addition to the presence of an active site glutamate in order for the enzyme to function.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">Tyrosylprotein sulfotransferase</span> Enzyme

Tyrosylprotein sulfotransferase is an enzyme that catalyzes tyrosine sulfation.

In enzymology, sarcosine dehydrogenase (EC 1.5.8.3) is a mitochondrial enzyme that catalyzes the chemical reaction N-demethylation of sarcosine to give glycine. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donor with other acceptors. The systematic name of this enzyme class is sarcosine:acceptor oxidoreductase (demethylating). Other names in common use include sarcosine N-demethylase, monomethylglycine dehydrogenase, and sarcosine:(acceptor) oxidoreductase (demethylating). Sarcosine dehydrogenase is closely related to dimethylglycine dehydrogenase, which catalyzes the demethylation reaction of dimethylglycine to sarcosine. Both sarcosine dehydrogenase and dimethylglycine dehydrogenase use FAD as a cofactor. Sarcosine dehydrogenase is linked by electron-transferring flavoprotein (ETF) to the respiratory redox chain. The general chemical reaction catalyzed by sarcosine dehydrogenase is:

<span class="mw-page-title-main">Glycerol dehydrogenase</span>

Glycerol dehydrogenase (EC 1.1.1.6, also known as NAD+-linked glycerol dehydrogenase, glycerol: NAD+ 2-oxidoreductase, GDH, GlDH, GlyDH) is an enzyme in the oxidoreductase family that utilizes the NAD+ to catalyze the oxidation of glycerol to form glycerone (dihydroxyacetone).

In enzymology, a testosterone 17beta-dehydrogenase is an enzyme that catalyzes the chemical reaction between testosterone and androst-4-ene-3,17-dione. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor.

<span class="mw-page-title-main">3-hydroxyacyl-CoA dehydrogenase</span> Enzyme

In enzymology, a 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-hydroxyisobutyrate dehydrogenase</span> Protein-coding gene in the species Homo sapiens

In enzymology, a 3-hydroxyisobutyrate dehydrogenase also known as β-hydroxyisobutyrate dehydrogenase or 3-hydroxyisobutyrate dehydrogenase, mitochondrial (HIBADH) is an enzyme that in humans is encoded by the HIBADH gene.

Alkylglycerol monooxygenase (AGMO) is an enzyme that catalyzes the hydroxylation of alkylglycerols, a specific subclass of ether lipids. This enzyme was first described in 1964 as a pteridine-dependent ether lipid cleaving enzyme. In 2010 finally, the gene coding for alkylglycerol monooxygenase was discovered as transmembrane protein 195 (TMEM195) on chromosome 7. In analogy to the enzymes phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase and nitric oxide synthase, alkylglycerol monooxygenase critically depends on the cofactor tetrahydrobiopterin and iron.

In enzymology, a malate oxidase (EC 1.1.3.3) is an enzyme that catalyzes the chemical reaction

In enzymology, an aldehyde dehydrogenase [NAD(P)+] (EC 1.2.1.5) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Betaine-aldehyde dehydrogenase</span> Enzyme

In enzymology, a betaine-aldehyde dehydrogenase (EC 1.2.1.8) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ribosyldihydronicotinamide dehydrogenase (quinone)</span>

In enzymology, a ribosyldihydronicotinamide dehydrogenase (quinone) (EC 1.10.99.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">BCKDHB</span> Protein-coding gene in the species Homo sapiens

2-Oxoisovalerate dehydrogenase subunit beta, mitochondrial is an enzyme that in humans is encoded by the BCKDHB gene.

References

  1. Nagai A, Ward E, Beck J, Tada S, Chang JY, Scheidegger A, Ryals J (May 1991). "Structural and functional conservation of histidinol dehydrogenase between plants and microbes". Proc. Natl. Acad. Sci. U.S.A. 88 (10): 4133–7. Bibcode:1991PNAS...88.4133N. doi: 10.1073/pnas.88.10.4133 . PMC   51612 . PMID   2034659.
  2. Cowan-Jacob SW, Rahuel J, Nagai A, Iwasaki G, Ohta D (November 1996). "Crystallization and preliminary crystallographic analysis of cabbage histidinol dehydrogenase". Acta Crystallogr. D. 52 (Pt 6): 1188–90. doi:10.1107/S0907444996008396. PMID   15299582.
  3. 1 2 3 Barbosa JA, Sivaraman J, Li Y, Larocque R, Matte A, Schrag JD, Cygler M (February 2002). "Mechanism of action and NAD+-binding mode revealed by the crystal structure of L-histidinol dehydrogenase". Proc. Natl. Acad. Sci. U.S.A. 99 (4): 1859–64. Bibcode:2002PNAS...99.1859B. doi: 10.1073/pnas.022476199 . PMC   122284 . PMID   11842181.
  4. 1 2 3 4 Grubmeyer CT, Gray WR (August 1986). "A cysteine residue (cysteine-116) in the histidinol binding site of histidinol dehydrogenase". Biochemistry. 25 (17): 4778–84. doi:10.1021/bi00365a009. PMID   3533140.
  5. "Increased expression and secretion of recombinant hIFNγ through amino acid starvation-induced selective pressure on the adjacent HIS4 gene in Pichia pastoris : Acta Facultatis Pharmaceuticae Universitatis Comenianae". Archived from the original on 2017-07-08. Retrieved 2016-02-14.

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR012131