Jabotinsky matrix Last updated November 06, 2025 Definition Let f {\displaystyle f} be a formal power series . There exists coefficients ( B n , k ) n , k ≥ 0 {\displaystyle (B_{n,k})_{n,k\geq 0}} such thatf ( x ) k = ∑ n = 0 ∞ B n , k x n . {\displaystyle f(x)^{k}=\sum _{n=0}^{\infty }B_{n,k}x^{n}.} The Jabotinsky matrix of f ( x ) {\displaystyle f(x)} is defined as the infinite matrix [ 1] [ 2]
B ( f ) = ( B 0 , 0 B 0 , 1 B 0 , 2 ⋯ B 1 , 0 B 1 , 1 B 1 , 2 ⋯ B 2 , 0 B 2 , 1 B 2 , 2 ⋯ ⋮ ⋮ ⋮ ⋱ ) {\displaystyle \mathbf {B} (f)=\left({\begin{array}{cccc}B_{0,0}&B_{0,1}&B_{0,2}&\cdots \\B_{1,0}&B_{1,1}&B_{1,2}&\cdots \\B_{2,0}&B_{2,1}&B_{2,2}&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)} When f ( 0 ) = 0 {\displaystyle f(0)=0} , B ( f ) {\displaystyle \mathbf {B} (f)} becomes an infinite lower triangular matrix , and the entries are given by ordinary Bell polynomials evaluated at the coefficients of f {\displaystyle f} . This is why B ( f ) {\displaystyle \mathbf {B} (f)} is oftentimes referred to as a Bell matrix [ 3] [ 4] .
History Jabotinsky matrices have a long history, and were perhaps used for the first time in the context of iteration theory by Albert A. Bennett [ 5] in 1915. Jabotinsky later pursued Bennett's research [ 6] [ 7] and applied them to Faber polynomials [ 8] , after Issai Schur rediscovered Jabotinsky matrices in about 1940 [ 9] while working on Faber polynomials . Jabotinsky matrices were popularized during the 70s by Louis Comtet [ fr ] 's book Advanced Combinatorics , where he referred to them as iteration matrices , which is a denomination also sometimes used nowadays [ 10] . This article's denomination appeared later [ 11] [ 12] [ 13] [ 14] [ 15] and notably used by Donald Knuth [ 2] .
Properties Jabotinsky matrices satisfy the fundamental relationship
B ( f ∘ g ) = B ( g ) B ( f ) {\displaystyle {\textbf {B}}(f\circ g)={\textbf {B}}(g){\textbf {B}}(f)} which makes the Jabotinsky matrix B ( f ) {\displaystyle \mathbf {B} (f)} a (direct) representation of f ( x ) {\displaystyle f(x)} . Here the term f ∘ g {\displaystyle f\circ g} denotes the composition of functions f ( g ( x ) ) {\displaystyle f(g(x))} .
The fundamental property implies
B ( f n ) = B ( f ) n {\displaystyle {\textbf {B}}(f^{n})={\textbf {B}}(f)^{n}} , where f n {\displaystyle f^{n}} is an iterated function and n {\displaystyle n} is a natural integer.B ( f − 1 ) = B ( f ) − 1 {\displaystyle {\textbf {B}}(f^{-1})={\textbf {B}}(f)^{-1}} , where f − 1 {\displaystyle f^{-1}} is the inverse function if f {\displaystyle f} has a compositional inverse .[ 1 , x , x 2 , . . . ] B ( f ) = [ 1 , f ( x ) , f ( x ) 2 , . . . ] . {\displaystyle {\begin{bmatrix}1,x,x^{2},...\end{bmatrix}}{\textbf {B}}(f)={\begin{bmatrix}1,f(x),f(x)^{2},...\end{bmatrix}}.} Generalization Given a sequence ( Ω n ) n ≥ 0 {\displaystyle (\Omega _{n})_{n\geq 0}} , we can instead define the matrix with the coefficient ( B n , k Ω ) n , k ≥ 0 {\displaystyle (B_{n,k}^{\Omega })_{n,k\geq 0}} by [ 1] Ω k f ( x ) k = ∑ n = 0 ∞ B n , k Ω Ω n x n . {\displaystyle \Omega _{k}f(x)^{k}=\sum _{n=0}^{\infty }B_{n,k}^{\Omega }\Omega _{n}x^{n}.} If ( Ω n ) n ≥ 0 {\displaystyle (\Omega _{n})_{n\geq 0}} is the constant sequence equal to 1 {\displaystyle 1} , we recover Jabotinsky matrices. In some contexts, the sequence is chosen to be Ω n = 1 / n ! {\displaystyle \Omega _{n}=1/n!} , so that the entry are given by regular Bell polynomials . This form is more convenient for the functions f ( x ) = − log ( 1 − x ) {\displaystyle f(x)=-\log(1-x)} and f ( x ) = e x − 1 {\displaystyle f(x)=e^{x}-1} where Stirling numbers of the first and second kind appear in the matrices (see the examples).
This generalization gives a completely equivalent matrix since B n , k Ω Ω n Ω k = B n , k {\displaystyle B_{n,k}^{\Omega }{\frac {\Omega _{n}}{\Omega _{k}}}=B_{n,k}} .
Examples The Jabotinsky matrix of a constant is: B ( a ) = ( 1 0 0 ⋯ a 0 0 ⋯ a 2 0 0 ⋯ ⋮ ⋮ ⋮ ⋱ ) {\displaystyle \mathbf {B} (a)=\left({\begin{array}{cccc}1&0&0&\cdots \\a&0&0&\cdots \\a^{2}&0&0&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)} The Jabotinsky matrix of a constant multiple is: B ( c x ) = ( 1 0 0 ⋯ 0 c 0 ⋯ 0 0 c 2 ⋯ ⋮ ⋮ ⋮ ⋱ ) {\displaystyle {\textbf {B}}(cx)=\left({\begin{array}{cccc}1&0&0&\cdots \\0&c&0&\cdots \\0&0&c^{2}&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)} The Jabotinsky matrix of the successor function : B ( 1 + x ) = ( 1 0 0 0 ⋯ 1 1 0 0 ⋯ 1 2 1 0 ⋯ 1 3 3 1 ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ) {\displaystyle {\textbf {B}}(1+x)=\left({\begin{array}{ccccc}1&0&0&0&\cdots \\1&1&0&0&\cdots \\1&2&1&0&\cdots \\1&3&3&1&\cdots \\\vdots &\vdots &\vdots &\vdots &\ddots \end{array}}\right)} The matrix displays Pascal's triangle . The Jabotinsky matrix of the logarithm is related to the (unsigned) Stirling numbers of the first kind scaled by factorials : B ( − log ( 1 − x ) ) = ( 1 0 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0 1 2 1 0 0 ⋯ 0 1 3 1 1 0 ⋯ 0 1 4 11 12 3 2 1 ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ) {\displaystyle {\textbf {B}}(-\log(1-x))=\left({\begin{array}{cccccc}1&0&0&0&0&\cdots \\0&1&0&0&0&\cdots \\0&{\frac {1}{2}}&1&0&0&\cdots \\0&{\frac {1}{3}}&1&1&0&\cdots \\0&{\frac {1}{4}}&{\frac {11}{12}}&{\frac {3}{2}}&1&\cdots \\\vdots &\vdots &\vdots &\vdots &\vdots &\ddots \end{array}}\right)} B ( − log ( 1 − x ) ) n , k = [ n k ] k ! n ! {\displaystyle {\textbf {B}}(-\log(1-x))_{n,k}=\left[{n \atop k}\right]{\frac {k!}{n!}}} The Jabotinsky matrix of the exponential function minus 1 is related to the Stirling numbers of the second kind scaled by factorials : B ( exp ( x ) − 1 ) = ( 1 0 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0 1 2 1 0 0 ⋯ 0 1 6 1 1 0 ⋯ 0 1 24 7 12 3 2 1 ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ) {\displaystyle {\textbf {B}}(\exp(x)-1)=\left({\begin{array}{cccccc}1&0&0&0&0&\cdots \\0&1&0&0&0&\cdots \\0&{\frac {1}{2}}&1&0&0&\cdots \\0&{\frac {1}{6}}&1&1&0&\cdots \\0&{\frac {1}{24}}&{\frac {7}{12}}&{\frac {3}{2}}&1&\cdots \\\vdots &\vdots &\vdots &\vdots &\vdots &\ddots \end{array}}\right)} B ( exp ( x ) − 1 ) n , k = { n k } k ! n ! {\displaystyle {\textbf {B}}(\exp(x)-1)_{n,k}=\left\{{n \atop k}\right\}{\frac {k!}{n!}}} The Jabotinsky matrix of exponential functions is given by B ( exp ) n , k = ( k a ) n n ! {\displaystyle {\textbf {B}}(\exp )_{n,k}={\frac {(ka)^{n}}{n!}}} . Notes 1 2 Comtet, Louis (1974). Advanced Combinatorics: The Art of Finite and Infinite Expansions . Dordrecht: Springer Netherlands. ISBN 978-94-010-2198-2 . 1 2 Knuth, D. (1992). "Convolution Polynomials". The Mathematica Journal . 2 (4): 67– 78. arXiv : math/9207221 . Bibcode :1992math......7221K . ↑ Aldrovandi, R.; Freitas, L. P. (1998-10-01). "Continuous iteration of dynamical maps" . Journal of Mathematical Physics . 39 (10): 5324– 5336. doi :10.1063/1.532574 . ISSN 0022-2488 . ↑ Aldrovandi, R. (2001). Special matrices of mathematical physics: stochastic, circulant, and Bell matrices . Singapore ; River Edge, N.J: World Scientific. ISBN 978-981-02-4708-9 . ↑ Bennett, Albert A. (1915). "The Iteration of Functions of one Variable" . The Annals of Mathematics . 17 (1): 23. doi :10.2307/2007213 . ↑ Jabotinsky, Eri (1947). "Sur la représentation de la composition de fonctions par un produit de matrices. Applicaton à l'itération de e^x et de e^x-1". Comptes rendus de l'Académie des Sciences . 224 : 323– 324. ↑ Jabotinsky, Eri (1963). "Analytic iteration" . Transactions of the American Mathematical Society . 108 (3): 457– 477. doi :10.1090/S0002-9947-1963-0155971-X . ISSN 0002-9947 . ↑ Jabotinsky, Eri (1953). "Representation of functions by matrices. Application to Faber polynomials" . Proceedings of the American Mathematical Society . 4 (4): 546– 553. doi : 10.1090/S0002-9939-1953-0059359-0 . ISSN 0002-9939 . ↑ Schur, Issai (1945). "On Faber Polynomials" . American Journal of Mathematics . 67 (1): 33. doi :10.2307/2371913 . ↑ Aschenbrenner, Matthias (2012). "Logarithms of iteration matrices, and proof of a conjecture by Shadrin and Zvonkine" . Journal of Combinatorial Theory, Series A . 119 (3): 627– 654. doi :10.1016/j.jcta.2011.11.008 . ↑ Lavoie, J. L.; Tremblay, R. (1981). "The Jabotinsky Matrix of a Power Series" . SIAM Journal on Mathematical Analysis . 12 (6): 819– 825. doi :10.1137/0512067 . ISSN 0036-1410 . ↑ Brini, Andrea (1984-05-01). "Higher dimensional recursive matrices and diagonal delta sets of series" . Journal of Combinatorial Theory, Series A . 36 (3): 315– 331. doi :10.1016/0097-3165(84)90039-6 . ISSN 0097-3165 . ↑ Lang, W. (2000). "On generalizations of the stirling number triangles". Journal of Integer Sequences . 3 (2.4): 1– 19. Bibcode :2000JIntS...3...24L . ↑ Mansour, Toufik; Schork, Matthias; Shattuck, Mark (2012-11-01). "On the Stirling numbers associated with the meromorphic Weyl algebra" . Applied Mathematics Letters . 25 (11): 1767– 1771. doi :10.1016/j.aml.2012.02.009 . ISSN 0893-9659 . ↑ Sokal, Alan D. (2023-02-01). "Total positivity of some polynomial matrices that enumerate labeled trees and forests I: forests of rooted labeled trees" . Monatshefte für Mathematik . 200 (2): 389– 452. doi :10.1007/s00605-022-01687-0 . ISSN 1436-5081 . ↑ Tsiligiannis, C. A; Lyberatos, G (1987-08-15). "Steady state bifurcations and exact multiplicity conditions via Carleman linearization" . Journal of Mathematical Analysis and Applications . 126 (1): 143– 160. doi :10.1016/0022-247X(87)90082-5 . ISSN 0022-247X . ↑ Kowalski, Krzysztof; Steeb, W.-H. (1991). Nonlinear dynamical systems and Carleman linearization . Singapore ; Teaneck, N.J: World Scientific. ISBN 978-981-02-0587-4 . ↑ Gralewicz, P.; Kowalski, K. (2002). "Continuous time evolution from iterated maps and Carleman linearization" . Chaos, Solitons & Fractals . 14 (4): 563– 572. doi :10.1016/S0960-0779(01)00222-3 .
This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.