List of minerals approved by IMA

Last updated
Crystals of serandite, natrolite, analcime, and aegirine from Mont Saint-Hilaire, Quebec, Canada Serandite, natrolite, analcime, aegirine 300-4-2112.JPG
Crystals of serandite, natrolite, analcime, and aegirine from Mont Saint-Hilaire, Quebec, Canada

Mineralogy is an active science in which minerals are discovered or recognised on a regular basis. Use of old mineral names is also discontinued, for example when a name is no longer considered valid. Therefore, a list of recognised mineral species is never complete.

Contents

Minerals are distinguished by various chemical and physical properties. Differences in chemical composition and crystal structure distinguish the various species. Within a mineral species there may be variation in physical properties or minor amounts of impurities that are recognized by mineralogists or wider society as a mineral variety.

The International Mineralogical Association (IMA) is the international scientific group that recognises new minerals and new mineral names. However, minerals discovered before 1959 did not go through the official naming procedure. Some minerals published previously have been either confirmed or discredited since that date. This list contains a mixture of mineral names that have been approved since 1959 and those mineral names believed to still refer to valid mineral species (these are called "grandfathered" species). Presently, each year about 90–110 new mineral species (the sum of all mutations c. 120 per year) are officially approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association. [1]

As of April 2011, the IMA/CNMNC administrates c. 6,500 names. [2] Also as of April 2011, the Webmineral.com website lists 2,722 published and approved (IMA/CNMNC) minerals, 81 discredited minerals (IMA/CNMNC status; Michael Fleischer discredited around one thousand species in his lifetime), 2,691 synonyms and 123 "not approved" names. [3]

As of December 2020, the IMA - CNMNC Master List of Minerals lists 5,650 valid minerals, [4] including 1,159 pre-IMA minerals (grandfathered), and 96 questionable minerals. Also as of December 2020, the Handbook of Mineralogy lists 4,690 species, [5] and the IMA Database of Mineral Properties/Rruff Project lists 5,637 valid species (IMA/CNMNC) of a total of 5,862 minerals. [6] The IMA/Rruff database includes 1,289 pre-IMA minerals. [6]

Due to the length of this list, it is divided into alphabetical groups. The minerals are sorted by name.

Working practices

Miscellany

Notes

Feldspar series Feldspar group.svg
Feldspar series
Phase diagram of Al2SiO5
(nesosilicates). [54]

Nomenclature dictionary

Special minerals (relaxed sense)
"Ore" minerals (sulfides and oxides)
Evaporite and similar minerals
Mineral structures with a tetrahedral unit, monomeric minerals
Mineral structures with a tetrahedral unit, di- and chain silicates
Mineral structures with a tetrahedral unit, framework silicates
Mineral structures with a tetrahedral unit, other cases
Other cases (relaxed sense)

See also

Further reading

Notes

  1. No Webmineral reference
  2. No Webmineral reference
  3. No Handbook of Mineralogy reference
  4. No Webmineral reference

Related Research Articles

Mineral Element or chemical compound that is normally crystalline, formed as a result of geological processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure, that occurs naturally in pure form.

Silicate mineral Rock-forming minerals with predominantly silicate anions

Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.

Borate mineral mineral which contains a borate anion group

The borate minerals are minerals which contain a borate anion group. The borate (BO3) units may be polymerised similar to the SiO4 unit of the silicate mineral class. This results in B2O5, B3O6, B2O4 anions as well as more complex structures which include hydroxide or halogen anions. The [B(O,OH)4] anion exists as well.

Carbonate mineral

Carbonate minerals are those minerals containing the carbonate ion, CO32−.

Sulfosalt mineral

Sulfosalt minerals are those complex sulfide minerals with the general formula: AmBnSp; where A represents a metal such as copper, lead, silver, iron, and rarely mercury, zinc, vanadium; B usually represents semi-metal such as arsenic, antimony, bismuth, and rarely germanium, or metals like tin and rarely vanadium; and S is sulfur or rarely selenium or/and tellurium. The Strunz classification includes the sulfosalts in a sulfides and sulfosalts superclass. A group which have similar appearing formulas are the sulfarsenides. In sulfarsenides the arsenic substitutes for sulfur whereas in the sulfosalts the arsenic substitutes for a metal cation.

Oxide mineral

The oxide mineral class includes those minerals in which the oxide anion (O2−) is bonded to one or more metal alloys. The hydroxide-bearing minerals are typically included in the oxide class. The minerals with complex anion groups such as the silicates, sulfates, carbonates and phosphates are classed separately.

Founded in 1958, the International Mineralogical Association (IMA) is an international group of 40 national societies. The goal is to promote the science of mineralogy and to standardize the nomenclature of the 5000 plus known mineral species. The IMA is affiliated with the International Union of Geological Sciences (IUGS).

Yuksporite

Yuksporite is a rare inosilicate mineral with double width, unbranched chains, and the complicated chemical formula K4(Ca,Na)14Sr2Mn(Ti,Nb)4(O,OH)4(Si6O17)2(Si2O7)3(H2O,OH)3. It contains the relatively rare elements strontium, titanium and niobium, as well as the commoner metallic elements potassium, calcium, sodium and manganese. As with all silicates, it contains groups of linked silicon and oxygen atoms, as well as some associated water molecules.

Betafite

Betafite is a mineral group in the pyrochlore supergroup, with the chemical formula (Ca,U)2(Ti,Nb,Ta)2O6(OH). Betafite typically occurs as a primary mineral in granite pegmatites, rarely in carbonatites. Defined by the B-site atom Ti, Atencio et al.(2010) combined and considered the ideas portrayed in (Hatert and Burke)(2008) and a modernization of (Hogarth)(1977) system for nomenclature of pyrochlore and betafite in order to further rationalize the naming process of this grouping of minerals. Therefore, Atencio et al. (2010), states that only two of the mineral species that were formerly recognized under the previous nomenclature system of betafite in Hogarth (1977) are now recognized. They are oxyuranobetafite and oxycalciobetafite. Now the term betafite is a synonym or varietal group name under the pyrochlore super group (Christy and Atencio 2013).

Nickel–Strunz classification is a scheme for categorizing minerals based upon their chemical composition, introduced by German mineralogist Karl Hugo Strunz in his Mineralogische Tabellen (1941). The 4th and the 5th edition was also edited by Christel Tennyson (1966). It was followed by A.S. Povarennykh with a modified classification.

Halide mineral

Halide minerals are those minerals with a dominant halide anion. Complex halide minerals may also have polyatomic anions.

Arsenite minerals are very rare oxygen-bearing arsenic minerals. Classical world localities where such minerals occur include the complex skarn manganese deposit at Långban (Sweden) and the polymetallic Tsumeb deposit (Namibia). The most often reported arsenite anion in minerals is the AsO33− anion, present for example in reinerite Zn3(AsO3)2. Unique diarsenite anions occur i. e. in leiteite Zn[As2O4] and paulmooreite Pb[As2O5]. More complex arsenites include schneiderhöhnite Fe2+Fe3+3[As5O13] and ludlockite PbFe3+4As10O22.

Bustamite

Bustamite is a calcium manganese inosilicate (chain silicate) and a member of the wollastonite group. Magnesium, zinc and iron are common impurities substituting for manganese. Bustamite is the high-temperature polymorph of CaMnSi2O6 and johannsenite is the low temperature polymorph. The inversion takes place at 830 °C (1,530 °F), but may be very slow.
Bustamite could be confused with light-colored rhodonite or pyroxmangite, but both these minerals are biaxial (+) whereas bustamite is biaxial (-).

Pimelite Nickel-rich smectite deprecated as mineral species in 2006

Pimelite was discredited as a mineral species by the International Mineralogical Association (IMA) in 2006, in an article which suggests that “pimelite” specimens are probably willemseite, or kerolite. This was a mass discreditation, and not based on any re-examination of the type material. Nevertheless, a considerable number of papers have been written, verifying that pimelite is a nickel-dominant smectite. It is always possible to redefine a mineral wrongly discredited.

Fluorellestadite Nesosilicate mineral

Fluorellestadite is a rare nesosilicate of calcium, with sulfate and fluorine, with the chemical formula Ca10(SiO4)3(SO4)3F2. It is a member of the apatite group, and forms a series with hydroxylellestadite.

Georgius Agricola is considered the 'father of mineralogy'. Nicolas Steno founded the stratigraphy, the geology characterizes the rocks in each layer and the mineralogy characterizes the minerals in each rock. The chemical elements were discovered in identified minerals and with the help of the identified elements the mineral crystal structure could be described. One milestone was the discovery of the geometrical law of crystallization by René Just Haüy, a further development of the work by Nicolas Steno and Jean-Baptiste L. Romé de l'Isle. Important contributions came from some Saxon "Bergraths"/ Freiberg Mining Academy: Johann F. Henckel, Abraham Gottlob Werner and his students. Other milestones were the notion that metals are elements too and the periodic table of the elements by Dmitri Ivanovich Mendeleev. The overview of the organic bonds by Kekulé was necessary to understand the silicates, first refinements described by Bragg and Machatschki; and it was only possibly to understand a crystal structure with Dalton's atomic theory, the notion of atomic orbital and Goldschmidt's explanations. Specific gravity, streak and X-ray powder diffraction are quite specific for a Nickel-Strunz identifier. Nowadays, non-destructive electron microprobe analysis is used to get the empirical formula of a mineral. Finally, the International Zeolite Association (IZA) took care of the zeolite frameworks.

Zirsilite-(Ce)

Zirsilite-(Ce) is a very rare mineral of the eudialyte group, with formula (Na,[])12(Ce,Na)3Ca6Mn3Zr3NbSi(Si9O27)2(Si3O9)2O(OH)3(CO3)•H2O. The original formula was extended to show the presence of cyclic silicate groups and the presence of silicon at the M4 site, according to the nomenclature of the eudialyte group.according to the nomenclature of eudialyte group. Zirsilite-(Ce) differs from carbokentbrooksite in cerium-dominance over sodium only. Both minerals are intimately associated. The only other currently known representative of the eudialyte group having rare earth elements (in particular cerium, as suggested by the "-Ce)" Levinson suffix in the name) in dominance is johnsenite-(Ce).

Ferronickel platinum Rare occurring mineral

Ferronickel platinum is a very rarely occurring minerals from the mineral class of elements (including natural alloys, intermetallic compounds, carbides, nitrides, phosphides and silicides) with the chemical composition Pt2FeNi and thus is chemically seen as a natural alloy, more precisely an intermetallic compound of platinum, nickel and iron in a ratio of 2:1:1.

References

  1. 1 2 "Missing Minerals". Elements. 3: 360. 2007.
  2. "The official IMA-CNMNC List of Mineral Names". March 2009. Archived from the original on 28 February 2011. Retrieved 2 April 2011.
  3. "A to Z Listing of Minerals". Webmineral.com. Archived from the original on 20 December 2010. Retrieved 2 April 2011.
  4. Pasero, Marco; et al. (November 2020). "The New IMA List of Minerals – A Work in Progress" (PDF). The New IMA List of Minerals. IMA – CNMNC (Commission on New Minerals Nomenclature and Classification). Archived (PDF) from the original on 10 December 2020. Retrieved 11 December 2020.
  5. John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols (editors). "Handbook of Mineralogy". Mineralogical Society of America. Retrieved 11 December 2020.CS1 maint: uses authors parameter (link)
  6. 1 2 3 "IMA Database of Mineral Properties/RRUFF Project". Department of Geosciences, University of Arizona. Retrieved 11 December 2020.
  7. "Minerals approved in 2010" (PDF). IMA/ CNMNC. Retrieved 10 March 2012.
  8. 1 2 Frank C. Hawthorne, Roberta Oberti, George E. Harlow, Walter V. Maresch, Robert F. Martin, John C. Schumacher, Mark D. Welch (2012). "Nomenclature of the amphibole supergroup". American Mineralogist. 97 (11–12): 2031–2048. Bibcode:2012AmMin..97.2031H. doi:10.2138/am.2012.4276.CS1 maint: uses authors parameter (link)
  9. Nickel, Ernest H.; Grice, Joel D. (1998). "The IMA Commission on New Minerals and Mineral Names: Procedures and Guidelines on Mineral Nomenclature, 1998" (PDF). The Canadian Mineralogist. 36 (1–4): 237. Bibcode:1998MinPe..64..237N. doi:10.1007/BF01226571. S2CID   10576420.
  10. Nickel E H, Nichols M C (2007). IMA/CNMNC List of Mineral Names : draft (PDF). Materials Data, Inc.CS1 maint: uses authors parameter (link)
  11. Nickel E H, Nichols M C (2009). IMA/CNMNC List of Mineral Names (PDF). Materials Data, Inc.CS1 maint: uses authors parameter (link)
  12. "IMA Mineral List". RRUFF Database.
  13. Burke E A J (2006). "A mass discreditation of GQN minerals". The Canadian Mineralogist. 44 (6): 1557–1560. doi:10.2113/gscanmin.44.6.1557.
  14. de Fourestier, Jeffrey (2002). "The Naming of Mineral Species Approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association: A Brief History". The Canadian Mineralogist. 40 (6): 1721–1735. CiteSeerX   10.1.1.579.3170 . doi:10.2113/gscanmin.40.6.1721.
  15. "The New IMA List of Minerals (September 2012)" (PDF). IMA-CNMNC.
  16. MinDat - Hatrurite
  17. Levinson A A (1966). "A system of nomenclature for rare-earth minerals". American Mineralogist. 51: 152–158.
  18. Nickel, E H; Mandarino, J A (1987). "Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature". American Mineralogist. 72: 1031–1042.
  19. Burke E A J (2008). "Tidying up mineral names: an IMA-CNMNC scheme for suffixes, hyphens and diacritical marks" (PDF). The Mineralogical Record. 39: 131–135.
  20. Armbruster, Thomas (2002). "Revised nomenclature of högbomite, nigerite, and taafeite minerals" (PDF). European Journal of Mineralogy. 14 (2): 389–395. Bibcode:2002EJMin..14..389A. CiteSeerX   10.1.1.594.9072 . doi:10.1127/0935-1221/2002/0014-0389.
  21. Bindi, L; Evain M; Spry P G; Menchetti S (2007). "The pearceite-polybasite group of minerals: crystal chemistry and new nomenclature rules". American Mineralogist. 92 (5–6): 918–925. Bibcode:2007AmMin..92..918B. doi:10.2138/am.2007.2440. S2CID   54853946.
  22. Darrell J. Henry; Milan Novák; Frank C. Hawthorne; Andreas Ertl; Barbara L. Dutrow; Pavel Uher & Federico Pezzotta (2011). "Nomenclature of the tourmaline-supergroup minerals" (PDF). American Mineralogist. 96 (5–6): 895–913. Bibcode:2011AmMin..96..895H. doi:10.2138/am.2011.3636. S2CID   38696645.
  23. Frédéric Hatert, Stuart J. Mills, Marco Pasero and Peter A. Williams (2013). "CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names" (PDF). European Journal of Mineralogy. 25 (1): 113–115. Bibcode:2013EJMin..25..113H. doi:10.1127/0935-1221/2013/0025-2267.CS1 maint: uses authors parameter (link)
  24. Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan JR, White TJ (2010). "Nomenclature of the apatite supergroup minerals". European Journal of Mineralogy. 22 (2): 163–179. Bibcode:2010EJMin..22..163P. doi:10.1127/0935-1221/2010/0022-2022.
  25. Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Giere R, Huess-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006). "Recommended nomenclature of epidote-group minerals". European Journal of Mineralogy. 18 (5): 551–567. Bibcode:2006EJMin..18..551A. CiteSeerX   10.1.1.511.9929 . doi:10.1127/0935-1221/2006/0018-0551.
  26. Hatert F, Mills S J, Pasero M, Williams P A (2013). "CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names". European Journal of Mineralogy. 25 (1): 113–115. Bibcode:2013EJMin..25..113H. doi:10.1127/0935-1221/2013/0025-2267.CS1 maint: uses authors parameter (link)
  27. Hålenius U, Hatert F, Pasero M, Mills S J (2015). "IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 26. New minerals and nomenclature modifications approved in 2015". Mineralogical Magazine. 79 (4): 941–947. doi: 10.1180/minmag.2015.079.4.05 .CS1 maint: uses authors parameter (link)
  28. Michael Fleischer (August 1966). "Index of New Mineral Names, Discredited Minerals, and Changes of Mineralogical Nomenclature in Volumes 1–50 of The American Mineralogist". American Mineralogist (8): 1247–1336.
  29. 1 2 "Master List of IMA-approved minerals (May 2015)" (PDF). IMA-CNMNC. Archived from the original (PDF) on 2016-03-03. Retrieved 2015-07-07.
  30. Ernest Nickel and Monte Nichols (9 February 2004). "Mineral Names, Redefinitions & Discreditations Passed by the CNMMN of the IMA" (PDF). Aleph Enterprises.CS1 maint: uses authors parameter (link)
  31. Mindat.org - Tohdite
  32. Mindat.org - Tellurocanfieldite
  33. Argentit (German)
  34. Mindat.org - Schapbachite
  35. Hey, M H (1982). "International Mineralogical Association: Commission on New Minerals and Mineral Names". Mineralogical Magazine. 46 (341): 513–514. Bibcode:1982MinM...46..513H. doi:10.1180/minmag.1982.046.341.25.
  36. Walenta K, Bernhardt H J, Theye T (2004). "Cubic AgBiS2 (schapbachite) from the Silberbrünnle mine near Gengenbach in the Central Black Forest, Germany". Neues Jahrbuch für Mineralogie - Monatshefte. 2004 (9): 425–432. doi:10.1127/0028-3649/2004/2004-0425.CS1 maint: uses authors parameter (link)
  37. Yoshinaga, N.; Aomine, S. (1962). "Allophane in some Ando soils". Soil Science and Plant Nutrition. 8 (2): 6–13. doi:10.1080/00380768.1962.10430983.
  38. Yoshinaga, N.; Aomine, S. (1962). "Imogolite in some Ando soils". Soil Science and Plant Nutrition. 8 (3): 22–29. doi: 10.1080/00380768.1962.10430993 .
  39. Hey, M.H. (1967). "International Mineralogical Association: Commission on New Minerals and Mineral Names" (PDF). Mineralogical Magazine. 36 (277): 133. Bibcode:1967MinM...36..131.. doi:10.1180/minmag.1967.036.277.20.
  40. Wada, Koji; Yoshinaga, Naganori (January–February 1969). "The structure of "Imogolite"" (PDF). The American Mineralogist. 54: 50–71. Retrieved 13 March 2012.
  41. Bailey, S. W. (1971). "Summary of national and international recommendations on clay mineral nomenclature: Clays and Clay Minerals". Clays and Clay Minerals. 19 (2): 131. doi: 10.1346/ccmn.1971.0190210 .
  42. Fleischer, M. (1983). Glossary of Mineral Species. Tucson, AZ: Mineralogical Record.
  43. Bayliss, P. (1987). "Mineralogical notes: mineral nomenclature: imogolite" (PDF). Mineralogical Magazine. 51 (360): 327. doi:10.1180/minmag.1987.051.360.18.
  44. Mindat
  45. Sokolova, E., Hawthorne, F. C., Abdu, Y.A., Genovese, A. & Cámara, F. (2015). "Reapproval of betalomonosovite as a valid mineral species: single-crystal X-ray diffraction, HRTEM, Raman and IR". Periodico di Mineralogia. ECMS2015: 157–158.CS1 maint: uses authors parameter (link)
  46. Mineralienatlas
  47. Yu, Z., Hao, Z., Wang, H., Yin, S., Cai, J. (2011). "Jichengite 3CuIr2S4·(Ni,Fe)9S8, a New Mineral, and Its Crystal Structure". Acta Geologica Sinica. 85 (5): 1022–1027. doi:10.1111/j.1755-6724.2011.00537.x.CS1 maint: uses authors parameter (link)
  48. Mindat
  49. Back, Malcolm E. (2014). Fleischer's Glossary of Mineral Species (11 ed.). Tucson AZ: Mineralogical Record Inc. p. 434.
  50. Back, Malcolm E.; Mandarino, Joseph A. (2008). Fleischer's Glossary of Mineral Species (10 ed.). Tucson AZ: Mineralogical Record Inc. p. 345.
  51. MinDat - Tiragalloite
  52. MinDat - Grenmarite
  53. Whitney, D.L. (2002). "Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey". American Mineralogist. 87 (4): 405–416. doi:10.2138/am-2002-0404.
  54. Whitney, D.L. (2002). "Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey". American Mineralogist. 87 (4): 405–416. doi:10.2138/am-2002-0404.
  55. Mindat.org - Chloromagnesite
  56. Mindat.org - Zinkosite
  57. Mindat.org - Biotite
  58. Handbookofmineralogy - Biotite
  59. Rieder, Milan, Cavazzini, Giancarlo, D'yakonov, Yurii S., Frank-Kamenetskii, Viktor A. (1998). "Nomenclature of the micas (IMA/CNMMN Mica Group Subcommittee Report)" (PDF). Canadian Mineralogist. 36: 905–912.CS1 maint: multiple names: authors list (link)
  60. Mindat.org - Chabazite
  61. Handbookofmineralogy - Chabazite
  62. Mindat.org - Dachiardite
  63. Webmineral - Dachiardite
  64. Mindat.org - Heulandite
  65. Handbookofmineralogy - Heulandite
  66. Mindat.org - Pyrochlore
  67. Webmineral - Pyrochlore
  68. Handbookofmineralogy - Pyrochlore
  69. Mindat.org - Roméite
  70. Webmineral - Roméite
  71. Handbookofmineralogy - Roméite
  72. Mindat.org - Betafite
  73. Webmineral - Betafite
  74. Handbookofmineraology - Betafite
  75. Mindat.org - Microlite group
  76. Mindat.org - Elsmoreite group
  • Web: rruff.info/ima/, 'IMA database of mineral properties' switchboard:
    • 'Not an IMA approved mineral' tag – E.g. buserite
    • 'Discredited' mineral tag – E.g. bindheimite
    • 'Pending publication' tag – E.g. drobecite (IMA 2002-034)
    • 'Questionable mineral species' tag – E.g. shubnikovite