Molecular drive

Last updated

Molecular drive is a term coined by Gabriel Dover in 1982 to describe evolutionary processes that change the genetic composition of a population through DNA turnover mechanisms. [1] [2] [3] Molecular drive operates independently of natural selection and genetic drift.

Contents

The best-known such process is the concerted evolution of genes present in many tandem copies, such as those for ribosomal RNAs or silk moth egg shell chorion proteins, in sexually reproducing species. The concept has been proposed to extend to the diversification of multigene families. [2] The mechanisms involved include gene conversion, unequal crossing-over, transposition, slippage replication and RNA-mediated exchanges. Because mutations changing the sequence of one copy are less common than deletions, duplications and replacement of one copy by another, the copies gradually come to resemble each other much more than they would if they had been evolving independently.

Concerted evolution can be unbiased, in which case every version has an equal probability of being the one that replaces the others. However, if the molecular events have any bias favouring one version of the sequence over others, that version will dominate the process and eventually replace the others. The name 'molecular drive' reflects the similarity of the process with what was originally the better-known process of meiotic drive.

Molecular drive can also act in bacteria, where parasexual processes such as natural transformation cause DNA turnover.

TRAM

According to Dover, TRAM is a genetic system that has features of non-mendelian inheritance Turnover, copy number and functional Redundancy And Modulatory. To date all regulatory regions (promoters) and genes that have been examined in detail at the molecular level, have TRAM characteristics. As such, part of their evolutionary history will have been influenced by the molecular drive process.

Adoptation

According to Dover, Adoptation is an evolved feature of an organism that contributes to its viability and reproduction (established by molecular drive) and that adopts some previously inaccessible component of the environment.

Related Research Articles

Microevolution change in allele frequencies that occurs over time within a population

Microevolution is the change in allele frequencies that occurs over time within a population. This change is due to four different processes: mutation, selection, gene flow and genetic drift. This change happens over a relatively short amount of time compared to the changes termed macroevolution.

Mutation Alteration in the nucleotide sequence of a genome

In biology, a mutation is an alteration in the nucleotide sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements.

Transposable element semiparasitic DNA sequence

A transposable element is a DNA sequence that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Transposition often results in duplication of the same genetic material. Barbara McClintock's discovery of them earned her a Nobel Prize in 1983.

Selfish genetic elements are genetic segments that can enhance their own transmission at the expense of other genes in the genome, even if this has no positive or a net negative effect on organismal fitness. Genomes have traditionally been viewed as cohesive units, with genes acting together to improve the fitness of the organism. However, when genes have some control over their own transmission, the rules can change, and so just like all social groups, genomes are vulnerable to selfish behaviour by their parts.

Central dogma of molecular biology Explanation of the flow of genetic information within a biological system

The central dogma of molecular biology is an explanation of the flow of genetic information within a biological system. It is often stated as "DNA makes RNA, and RNA makes protein", although this is not its original meaning. It was first stated by Francis Crick in 1957, then published in 1958:

The Central Dogma. This states that once "information" has passed into protein it cannot get out again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information means here the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein.

Molecular evolution process of change in the sequence composition of cellular molecules across generations

Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes.

Pseudogene Functionless relative of a gene

Pseudogenes are nonfunctional segments of DNA that resemble functional genes. Most arise as superfluous copies of functional genes, either directly by DNA duplication or indirectly by reverse transcription of an mRNA transcript. Pseudogenes are usually identified when genome sequence analysis finds gene-like sequences that lack regulatory sequences needed for transcription or translation, or whose coding sequences are obviously defective due to frameshifts or premature stop codons.

Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. Viruses have short generation times, and many—in particular RNA viruses—have relatively high mutation rates. This elevated mutation rate, when combined with natural selection, allows viruses to quickly adapt to changes in their host environment. In addition, most viruses provide many offspring, so any mutated genes can be passed on to many offspring quickly. Although the chance of mutations and evolution can change depending on the type of virus, viruses overall have high chances for mutations.

Gene family set of several similar genes

A gene family is a set of several similar genes, formed by duplication of a single original gene, and generally with similar biochemical functions. One such family are the genes for human hemoglobin subunits; the ten genes are in two clusters on different chromosomes, called the α-globin and β-globin loci. These two gene clusters are thought to have arisen as a result of a precursor gene being duplicated approximately 500 million years ago.

Ribosomal DNA

Ribosomal DNA (rDNA) is a DNA sequence that codes for ribosomal RNA. Ribosomes are assemblies of proteins and rRNA molecules that translate mRNA molecules to produce proteins. As shown in the figure, rDNA of eukaryotes consists of a tandem repeat of a unit segment, composed of NTS, ETS, 18S, ITS1, 5.8S, ITS2, and 28S tracts. rDNA has another gene, coding for 5S rRNA, located in the genome in most eukaryotes. 5S rDNA is also present in tandem repeats as in Drosophila. DNA regions that are repetitive often undergo recombination events. The rDNA repeats have many regulatory mechanisms that keep the DNA from undergoing mutations, thus keeping the rDNA conserved.

Evolution of sexual reproduction How sexually reproducing multicellular organisms could have evolved from a common ancestor species

The evolution of sexual reproduction is an adaptive feature which is common to almost all multi-cellular organisms with many being incapable of reproducing asexually. Prior to the advent of sexual reproduction, the adaptation process whereby genes would change from one generation to the next happened very slowly and randomly. Sex evolved as an extremely efficient mechanism for producing variation, and this had the major advantage of enabling organisms to adapt to changing environments. Sex did, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate. And if the environment has not changed, then there may be little reason for variation, as the organism may already be well adapted. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.

Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion event. Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.

Gene Sequence of DNA or RNA that codes for an RNA or protein product

In biology, a gene is a sequence of nucleotides in DNA or RNA that encodes the synthesis of a gene product, either RNA or protein.

Gabriel A. Dover was a British geneticist, best known for coining the term molecular drive in 1982 to describe a putative third evolutionary force operating distinctly from natural selection and genetic drift.

Exon shuffling is a molecular mechanism for the formation of new genes. It is a process through which two or more exons from different genes can be brought together ectopically, or the same exon can be duplicated, to create a new exon-intron structure. There are different mechanisms through which exon shuffling occurs: transposon mediated exon shuffling, crossover during sexual recombination of parental genomes and illegitimate recombination.

Masatoshi Nei American geneticist

Masatoshi Nei is a Japanese-born American evolutionary biologist currently affiliated with the Department of Biology at Temple University as a Carnell Professor. He was, until recently, Evan Pugh Professor of Biology at Pennsylvania State University and Director of the Institute of Molecular Evolutionary Genetics; he was there from 1990 to 2015.

Concerted evolution is the phenomenon where paralogous genes within one species are more closely related to one another than to members of the same gene family in closely related species. It is possible that this might occur even if the gene duplication event preceded the speciation event. High sequence similarity between paralogs may be maintained by homologous recombination events that lead to gene conversion, effectively copying some sequence from one and overwriting the homologous region in the other. Another possible hypothesis that has yet to be disproved is that rapid waves of gene duplication are responsible for the apparently "concerted" homogeneity of tandem and unlinked repeats seen in concerted evolution.

Genome evolution The process by which a genome changes in structure or size over time

Genome evolution is the process by which a genome changes in structure (sequence) or size over time. The study of genome evolution involves multiple fields such as structural analysis of the genome, the study of genomic parasites, gene and ancient genome duplications, polyploidy, and comparative genomics. Genome evolution is a constantly changing and evolving field due to the steadily growing number of sequenced genomes, both prokaryotic and eukaryotic, available to the scientific community and the public at large.

Enrico Coen British biologist

Enrico Sandro Coen is a biologist who studies the mechanisms used by plants to create complex and varied flower structures. Enrico combines molecular, genetic and imaging studies with population and ecological models and computational analysis to understand flower development.

Microbial phylogenetics is the study of the manner in which various groups of microorganisms are genetically related. This helps to trace their evolution. To study these relationships biologists rely on comparative genomics, as physiology and comparative anatomy are not possible methods.

References

  1. Dover, G. (1982). "Molecular drive: A cohesive mode of species evolution". Nature. 299 (5879): 111–117. Bibcode:1982Natur.299..111D. doi:10.1038/299111a0. PMID   7110332. S2CID   4317964.
  2. Dover, G. A.; Strachan, T; Coen, E. S.; Brown, S. D. (1982). "Molecular drive". Science. New York, N.Y. 218 (4577): 1069. Bibcode:1982Sci...218.1069D. doi:10.1126/science.7146895. PMID   7146894.