RAGE (receptor for advanced glycation endproducts), also called AGER, is a 35 kilodalton transmembrane receptor [5] of the immunoglobulin super family which was first characterized in 1992 by Neeper et al. [6] Its name comes from its ability to bind advanced glycation endproducts (AGE), which include chiefly glycoproteins, the glycans of which have been modified non-enzymatically through the Maillard reaction. In view of its inflammatory function in innate immunity and its ability to detect a class of ligands through a common structural motif, RAGE is often referred to as a pattern recognition receptor. RAGE also has at least one other agonistic ligand: high mobility group protein B1 (HMGB1). HMGB1 is an intracellular DNA-binding protein important in chromatin remodeling which can be released by necrotic cells passively, and by active secretion from macrophages, natural killer cells, and dendritic cells.
The interaction between RAGE and its ligands is thought to result in pro-inflammatory gene activation. [7] [8] Due to an enhanced level of RAGE ligands in diabetes or other chronic disorders, this receptor is hypothesised to have a causative effect in a range of inflammatory diseases such as diabetic complications, Alzheimer's disease and even some tumors.
Isoforms of the RAGE protein, which lack the transmembrane and the signaling domain (commonly referred to as soluble RAGE or sRAGE) are hypothesized to counteract the detrimental action of the full-length receptor and are hoped to provide a means to develop a cure against RAGE-associated diseases.
The RAGE gene lies within the major histocompatibility complex (MHC class III region) on chromosome 6 and comprises 11 exons interlaced by 10 introns. Total length of the gene is about 1400 base pairs (bp) including the promoter region, which partly overlaps with the PBX2 gene. [9] About 30 polymorphisms are known most of which are single-nucleotide polymorphisms. [10]
The primary transcript of the human RAGE gene (pre-mRNA) is thought to be alternatively spliced. So far about 6 isoforms including the full length transmembrane receptor have been found in different tissues such as lung, kidney, brain etc. Five of these 6 isoforms lack the transmembrane domain and are thus believed to be secreted from cells. Generally these isoforms are referred to as sRAGE (soluble RAGE) or esRAGE (endogenous secretory RAGE). One of the isoforms lacks the V-domain and is thus believed not to be able to bind RAGE ligands.
RAGE exists in two primary forms in the body: a membrane-bound form known as mRAGE and a soluble form known as sRAGE. The membrane-bound form (mRAGE) consists of three key components: an extracellular region made up of three immunoglobulin-like domains (one variable V-type domain and two constant C-type domains), a transmembrane domain that anchors the receptor to the cell membrane, and an intracellular domain essential for signaling. [11] [12]
In contrast, the soluble form (sRAGE) consists only of the extracellular domains and lacks both the transmembrane and intracellular domains. sRAGE can be produced by two different mechanisms: either through alternative splicing of the RAGE gene, leading to a truncated form that lacks the transmembrane and cytosolic regions, or through proteolytic cleavage of mRAGE by specific enzymes such as ADAM10 or matrix metalloproteinases (MMPs). [13]
Upon ligand binding, mRAGE recruits the intracellular protein DIAPH1 (Diaphanous-related formin-1), which is critical for initiating intracellular signaling. This signaling cascade can result in pathological outcomes, including oxidative stress, inflammation, cellular dysfunction, and apoptosis. (Refer to the schematics attached) These effects are particularly significant in the progression of several chronic diseases, such as diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer. [14] [15]
The full RAGE receptor plays an important role in cellular communication, interacting with a diverse set of ligands, including advanced glycation end products (AGEs), amyloid-β peptides, and S100 proteins. These interactions activate multiple downstream signaling pathways that contribute to cellular stress responses and are linked to the development of various inflammatory and metabolic conditions. [16]
The membrane-bound form of RAGE, commonly known as mRAGE, is a full-length receptor comprising several important structural domains:
The soluble form of RAGE (sRAGE) only includes the extracellular domain and lacks both the transmembrane and cytoplasmic domains. sRAGE can be generated through two primary mechanisms:
The balance between mRAGE and sRAGE levels is thought to influence disease outcomes. An excess of mRAGE is often associated with inflammation and disease progression, whereas higher concentrations of sRAGE may be beneficial in mitigating inflammatory responses.
The distinct structure of RAGE makes it a potential target for therapeutic intervention, particularly in conditions involving chronic inflammation. Inhibitors that prevent ligand binding to the V domain have been studied to reduce downstream inflammatory signaling. Targeting the cytoplasmic domain to disrupt intracellular signal transduction is another approach being explored. Additionally, increasing the levels of sRAGE could serve as an effective strategy to neutralize pro-inflammatory ligands and limit their interaction with mRAGE, offering potential benefits in treating inflammatory conditions. [18]
RAGE is able to bind several ligands and therefore is referred to as a pattern-recognition receptor. Ligands which have so far been found to bind RAGE are:
The receptor for advanced glycation end products (RAGE) is a multiligand member of the immunoglobulin superfamily, originally identified due to its ability to bind advanced glycation end products (AGEs). AGEs accumulate in various chronic conditions such as diabetes and renal failure. However, RAGE also binds other ligands, notably proteins of the S100/calgranulin family, such as EN-RAGE and S100B, which play significant roles in inflammatory processes. [24]
RAGE ligands interact with the receptor through its extracellular domain, triggering a cascade of intracellular signaling pathways. These pathways lead to the activation of key transcription factors like nuclear factor kappa B (NF-κB), which is central to the expression of proinflammatory cytokines, adhesion molecules (such as VCAM-1 and ICAM-1), and other mediators of inflammation. [24] Upon binding ligands like EN-RAGE or S100B, RAGE stimulates various inflammatory responses, including endothelial cell activation, mononuclear cell migration, and the production of cytokines such as TNF-α and IL-1β. [24]
These interactions between RAGE and its ligands contribute to chronic inflammatory conditions, including atherosclerosis, Alzheimer's disease, and diabetic complications. Inhibiting the RAGE-ligand interaction—through the use of soluble RAGE (sRAGE) or specific antibodies—can suppress these inflammatory responses, offering potential therapeutic strategies. [24]
Besides RAGE there are other receptors which are believed to bind advanced glycation endproducts. However, these receptors could play a role in the removal of AGE rather than in signal transduction as is the case for RAGE. Other AGE receptors are:
1. SR-A (Macrophage Scavenger Receptor Type I and II):
SR-A, also known as macrophage scavenger receptor Type I and II, is primarily expressed on macrophages. These receptors play an important role in recognizing and clearing modified proteins such as AGEs from circulation. The binding of AGEs to SR-A triggers internalization and degradation, effectively reducing oxidative stress within tissues. Upon ligand binding, SR-A activates downstream signaling pathways that promote phagocytosis and lysosomal degradation. This receptor also plays a role in modulating inflammatory signaling pathways, thereby contributing to the regulation of tissue homeostasis and preventing chronic inflammation caused by AGE accumulation.
2. OST-48 (Oligosaccharyl Transferase-4) (AGE-R1):
OST-48, commonly referred to as AGE-R1, is involved in detoxifying and preventing the accumulation of AGEs, especially under conditions such as diabetes. The expression of OST-48 is regulated by cellular stress responses, particularly oxidative stress, which often coincides with elevated AGE levels. OST-48 contributes to reducing AGE-induced cellular toxicity by facilitating the breakdown of AGEs into less harmful by-products. The receptor interacts with various signaling molecules, such as peroxisome proliferator-activated receptor gamma (PPAR-γ), which assists in mitigating cellular stress responses and restoring metabolic balance. This detoxification process plays a crucial role in limiting the negative impacts of AGEs on vascular and metabolic health. [25]
3. 80 K-H Phosphoprotein (Protein Kinase C Substrate) (AGE-R2):
The 80 K-H phosphoprotein, also known as protein kinase C substrate (AGE-R2), is involved in the intracellular signaling response to AGE exposure. AGE-R2 plays a role in regulating pathways that help cells adapt to oxidative stress by modulating protein kinase C (PKC) activity. This regulation aids in maintaining cellular homeostasis and mitigating the harmful effects of AGEs on cellular structures, ultimately contributing to the cell's resilience against oxidative stress. [26]
4. Galectin-3 (AGE-R3):
Galectin-3, a member of the lectin family, is a multifunctional receptor that binds to AGEs and helps clear them from the extracellular space. This receptor is known for its involvement in modulating apoptosis, cell proliferation, and immune responses. Upon binding AGEs, Galectin-3 activates downstream signaling pathways, including those involving mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB), which are crucial for inflammatory regulation. By mediating these pathways, Galectin-3 reduces the pro-inflammatory effects of AGE accumulation and helps maintain tissue integrity. Its role in regulating apoptosis and immune cell recruitment further contributes to limiting AGE-induced tissue damage, thus playing a protective role in chronic inflammatory and fibrotic conditions. [27]
5. LOX-1 (Lectin-like Oxidized Low-Density Lipoprotein Receptor-1):
LOX-1 is primarily known for binding oxidized low-density lipoproteins (oxLDL) but also binds AGEs. It is expressed on endothelial cells, smooth muscle cells, and macrophages, and plays a key role in mediating endothelial dysfunction and promoting atherosclerotic plaque formation. The binding of AGEs to LOX-1 activates signaling pathways, including reactive oxygen species (ROS) production and NF-κB activation, which contribute to vascular inflammation and dysfunction. This makes LOX-1 a significant mediator in the progression of vascular complications, particularly in metabolic disorders like diabetes. [28]
6. CD36:
CD36 is an important scavenger receptor expressed on macrophages, endothelial cells, and adipocytes, and it plays a major role in the recognition and uptake of AGE-modified proteins. CD36 facilitates the clearance of AGEs, thereby reducing oxidative stress and inflammation. It also contributes to lipid metabolism and immune regulation. The receptor is involved in activating signaling pathways such as MAPK and Toll-like receptor 4 (TLR4), which help modulate the inflammatory response to AGEs, thus preventing chronic inflammation and tissue damage. [29]
7. SR-BI (Scavenger Receptor Class B Type I):
SR-BI is primarily known for its role in cholesterol transport but also binds AGEs. It is expressed on various cell types, including liver cells and endothelial cells, where it facilitates the uptake of AGE-modified proteins. By mediating the clearance of AGEs, SR-BI helps mitigate oxidative stress and maintain lipid homeostasis. Its role in lipid metabolism also supports the reduction of AGE-induced cellular damage, contributing to overall vascular health. [30]
8. LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1):
LRP1 is involved in the endocytosis and degradation of various ligands, including AGEs. It is expressed in tissues such as the liver, vascular smooth muscle cells, and neurons. LRP1 functions by promoting the cellular uptake of AGE-modified proteins, thereby preventing their accumulation and reducing oxidative damage. The receptor also interacts with signaling pathways that regulate inflammation, making it an important factor in protecting against AGE-induced vascular and metabolic complications. [31]
9. MSR1 (Macrophage Scavenger Receptor 1):
MSR1, also known as class A scavenger receptor, is expressed primarily on macrophages and plays a crucial role in the phagocytic uptake of AGEs. By recognizing and internalizing AGE-modified proteins, MSR1 helps reduce inflammation and cellular stress in tissues exposed to AGEs. [32] This receptor is involved in activating pro-inflammatory signaling pathways, but it also contributes to tissue repair and the resolution of inflammation, helping maintain tissue homeostasis.
10. FEEL-1/CLEC14A (Facultative Endothelial Lectin-1):
FEEL-1, also known as CLEC14A, is a C-type lectin receptor expressed on endothelial cells. It binds AGEs and facilitates their clearance, thereby helping to maintain vascular health. [33] The interaction of FEEL-1 with AGEs is thought to reduce endothelial cell activation and inflammation, contributing to the protection of blood vessels from AGE-induced damage and maintaining vascular integrity.
11. SR-BII (Scavenger Receptor Class B Type II):
SR-BII, similar to SR-BI, is involved in lipid transfer and also binds AGEs. It plays a role in mediating the uptake of AGE-modified proteins and helps reduce cellular stress caused by AGEs. [34] By participating in lipid metabolism and AGE clearance, SR-BII contributes to mitigating oxidative damage and supporting cellular homeostasis.
12. DC-SIGN (Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Non-integrin):
DC-SIGN is a receptor expressed on dendritic cells and is primarily involved in pathogen recognition and immune responses. Recent research suggests that DC-SIGN can also bind AGEs and mediate their clearance, which helps reduce AGE-induced immune activation. [35] By modulating the immune response to AGEs, DC-SIGN plays a role in maintaining immune homeostasis and preventing chronic inflammation associated with AGE accumulation.
RAGE has been linked to several chronic diseases, which are thought to result from vascular damage. The pathogenesis is hypothesized to include ligand binding, upon which RAGE signals activation of nuclear factor kappa B (NF-κB). NF-κB controls several genes involved in inflammation. RAGE itself is upregulated by NF-κB. Given a condition in which there is a large amount of a RAGE ligand present (e.g. AGE in diabetes or amyloid-β-protein in Alzheimer's disease) this establishes a positive feed-back cycle, which leads to chronic inflammation. This chronic condition is then believed to alter the micro- and macrovasculature, resulting in organ damage or even organ failure. [36] However, whilst RAGE is up-regulated in inflammatory conditions, it is down-regulated in lung cancer and pulmonary fibrosis. [37]
Diseases that have been linked to RAGE include:[ citation needed ]
RAGE is expressed at its highest levels in the lung compared to other tissues, especially in alveolar type I cells. In cases of idiopathic pulmonary fibrosis (IPF), RAGE expression is lost, indicating that its regulation and expression in the pulmonary system differ from that in the vascular system. Studies show that blocking or knocking down RAGE impairs cell adhesion and increases cell proliferation and migration. [43]
RAGE plays a pivotal role in the pathogenesis of diabetes. RAGE, a multi-ligand receptor from the immunoglobulin superfamily, primarily binds to Advanced glycation end-products (AGEs) formed through the non-enzymatic glycation of proteins and lipids. In diabetes, hyperglycemia accelerates AGE formation, fostering a pro-inflammatory and pro-oxidative environment that worsens vascular damage and immune cell dysfunction. [44] [45]
In both type 1 and type 2 diabetes, RAGE significantly contributes to microvascular and macrovascular complications. It is highly expressed in diabetic blood vessels, cardiomyocytes, podocytes, and immune cells, where it co-localizes with ligands such as AGEs, S100 proteins, and high-mobility group box 1 (HMGB1). This co-localization leads to chronic cellular stress and inflammation, which differs from the transient inflammatory responses associated with acute infections. [44]
RAGE activation contributes to complications such as diabetic nephropathy and retinopathy. Studies in diabetic mouse models suggest that blocking RAGE with soluble receptor forms (sRAGE) can mitigate these conditions by reducing mesangial sclerosis, basement membrane thickening, and endothelial damage. [44] Additionally, RAGE’s interaction with AGEs and S100 proteins accelerates atherosclerosis in diabetes, marked by increased lesion complexity, macrophage accumulation, and vascular inflammation.
Beyond diabetes, RAGE is crucial in cardiovascular disease pathogenesis, particularly atherosclerosis. Although RAGE is present in atherosclerotic plaques in both diabetic and non-diabetic patients, its expression is heightened in diabetic individuals. RAGE activation in smooth muscle cells, endothelial cells, and macrophages promotes atherosclerotic lesion development through mechanisms involving oxidative stress, inflammatory signaling, and immune cell recruitment. [44]
RAGE-mediated signaling exacerbates vascular inflammation, endothelial dysfunction, and plaque instability. Animal studies demonstrate that blocking RAGE in diabetic models can reduce lesion formation and improve vascular function, even without affecting blood glucose levels. [44] [45]
Given its prominent role in both diabetes and CVD, RAGE is a promising therapeutic target. Preclinical and clinical studies are exploring RAGE antagonism to treat these conditions. Blocking RAGE signaling, either through pharmacological inhibitors or soluble decoy receptors like sRAGE, has shown potential in reducing vascular complications in diabetic patients. These strategies may offer new ways to manage the chronic inflammation and oxidative stress that drive both diabetic complications and cardiovascular disease progression [45]
RAGE's role in diabetes and cardiovascular disease highlights the importance of its signaling pathway in mediating chronic inflammation and vascular damage. Targeting RAGE could offer a promising approach to mitigating the burden of these diseases, particularly in patients with diabetes, where current therapies may fall short in preventing cardiovascular complications.
A number of small molecule RAGE inhibitors or antagonists have been reported. [46] [47] [48] [49]
Recent studies have highlighted the involvement of RAGE (Receptor for Advanced Glycation End-products) in mediating the intercellular communication through extracellular vesicles (EVs), particularly during inflammatory responses. RAGE, known for its interaction with various ligands including advanced glycation end-products (AGEs), plays a key role in the biogenesis and secretion of EVs from stressed or damaged cells. Extracellular vesicles, such as exosomes, are small lipid-bound vesicles that facilitate cell-to-cell communication by transferring molecular cargo including proteins, lipids, and RNAs between cells. Recent evidence suggests that RAGE-associated vesicular pathways contribute to the exacerbation of inflammation by enabling pro-inflammatory signaling between cells. [5] [8]
Specifically, a study from 2023 demonstrated that β-cells exposed to cytokine-induced stress release EVs enriched with RAGE ligands, which were found to further activate RAGE signaling pathways in neighboring cells, promoting inflammatory responses and impairing insulin secretion. These EV-mediated effects were shown to propagate inflammation across multiple cell types, indicating that RAGE-associated vesicles may play a pivotal role in amplifying the immune response in metabolic disorders like diabetes. [19] Another study from 2024 reported that EVs containing RAGE ligands could be detected in the bloodstream of patients with early-stage diabetes, suggesting the potential utility of these vesicles as biomarkers for early diagnosis of inflammatory diseases. [20]
Furthermore, these findings emphasize the dual role of RAGE in both EV biogenesis and as a mediator of inflammation through vesicular cross-talk, which has implications for targeting RAGE-EV interactions in therapeutic strategies aimed at mitigating inflammatory diseases.
The relationship between RAGE signaling and aging has been a growing focus of research, particularly in the context of cellular senescence and inflammaging—chronic, low-grade inflammation associated with aging. RAGE has been implicated in promoting cellular senescence, a permanent state of cell-cycle arrest, which contributes to the accumulation of dysfunctional cells that secrete pro-inflammatory factors, collectively referred to as the senescence-associated secretory phenotype (SASP).
A study conducted in 2022 demonstrated that the activation of RAGE by AGEs in aged tissues leads to the accumulation of senescent cells, thereby exacerbating tissue inflammation and contributing to age-related diseases. This study also noted that the upregulation of RAGE in aged cells increased the secretion of SASP factors, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), both of which are key mediators of inflammaging. [21]
Another recent investigation from 2023 found that mice deficient in RAGE exhibited reduced markers of senescence and systemic inflammation compared to age-matched controls, suggesting that targeting RAGE signaling may be a promising approach to mitigate the adverse effects of aging and extend healthspan. These findings highlight the role of RAGE as a crucial regulator of the inflammatory milieu associated with aging, providing potential avenues for therapeutic interventions aimed at reducing age-related inflammatory diseases. [22]
Inflammation is part of the biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. The five cardinal signs are heat, pain, redness, swelling, and loss of function.
Advanced glycation end products (AGEs) are proteins or lipids that become glycated as a result of exposure to sugars. They are a bio-marker implicated in aging and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney disease, and Alzheimer's disease.
Scavenger receptors are a large and diverse superfamily of cell surface receptors. Its properties were first recorded in 1970 by Drs. Brown and Goldstein, with the defining property being the ability to bind and remove modified low density lipoproteins (LDL). Today scavenger receptors are known to be involved in a wide range of processes, such as: homeostasis, apoptosis, inflammatory diseases and pathogen clearance. Scavenger receptors are mainly found on myeloid cells and other cells that bind to numerous ligands, primarily endogenous and modified host-molecules together with pathogen-associated molecular patterns (PAMPs), and remove them. The Kupffer cells in the liver are particularly rich in scavenger receptors, includes SR-A I, SR-A II, and MARCO.
Protease-activated receptors (PAR) are a subfamily of related G protein-coupled receptors that are activated by cleavage of part of their extracellular domain. They are highly expressed in platelets, and also on endothelial cells, fibroblasts, immune cells, myocytes, neurons, and tissues that line the gastrointestinal tract.
A co-receptor is a cell surface receptor that binds a signalling molecule in addition to a primary receptor in order to facilitate ligand recognition and initiate biological processes, such as entry of a pathogen into a host cell.
ICAM-1 also known as CD54 is a protein that in humans is encoded by the ICAM1 gene. This gene encodes a cell surface glycoprotein which is typically expressed on endothelial cells and cells of the immune system. It binds to integrins of type CD11a / CD18, or CD11b / CD18 and is also exploited by rhinovirus as a receptor for entry into respiratory epithelium.
Angiopoietin is part of a family of vascular growth factors that play a role in embryonic and postnatal angiogenesis. Angiopoietin signaling most directly corresponds with angiogenesis, the process by which new arteries and veins form from preexisting blood vessels. Angiogenesis proceeds through sprouting, endothelial cell migration, proliferation, and vessel destabilization and stabilization. They are responsible for assembling and disassembling the endothelial lining of blood vessels. Angiopoietin cytokines are involved with controlling microvascular permeability, vasodilation, and vasoconstriction by signaling smooth muscle cells surrounding vessels. There are now four identified angiopoietins: ANGPT1, ANGPT2, ANGPTL3, ANGPT4.
Interleukin 19 (IL-19) is an immunosuppressive protein that belongs to the IL-10 cytokine subfamily.
The mannose receptor is a C-type lectin primarily present on the surface of macrophages, immature dendritic cells and liver sinusoidal endothelial cells, but is also expressed on the surface of skin cells such as human dermal fibroblasts and keratinocytes. It is the first member of a family of endocytic receptors that includes Endo180 (CD280), M-type PLA2R, and DEC-205 (CD205).
VEGF receptors (VEGFRs) are receptors for vascular endothelial growth factor (VEGF). There are three main subtypes of VEGFR, numbered 1, 2 and 3. Depending on alternative splicing, they may be membrane-bound (mbVEGFR) or soluble (sVEGFR).
In immunology, leukocyte extravasation is the movement of leukocytes out of the circulatory system (extravasation) and towards the site of tissue damage or infection. This process forms part of the innate immune response, involving the recruitment of non-specific leukocytes. Monocytes also use this process in the absence of infection or tissue damage during their development into macrophages.
Oxidized low-density lipoprotein receptor 1 also known as lectin-type oxidized LDL receptor 1 (LOX-1) is a protein that in humans is encoded by the OLR1 gene.
Low density lipoprotein receptor-related protein 1 (LRP1), also known as alpha-2-macroglobulin receptor (A2MR), apolipoprotein E receptor (APOER) or cluster of differentiation 91 (CD91), is a protein forming a receptor found in the plasma membrane of cells involved in receptor-mediated endocytosis. In humans, the LRP1 protein is encoded by the LRP1 gene. LRP1 is also a key signalling protein and, thus, involved in various biological processes, such as lipoprotein metabolism and cell motility, and diseases, such as neurodegenerative diseases, atherosclerosis, and cancer.
Sphingosine-1-phosphate receptor 1, also known as endothelial differentiation gene 1 (EDG1) is a protein that in humans is encoded by the S1PR1 gene. S1PR1 is a G-protein-coupled receptor which binds the bioactive signaling molecule sphingosine 1-phosphate (S1P). S1PR1 belongs to a sphingosine-1-phosphate receptor subfamily comprising five members (S1PR1-5). S1PR1 was originally identified as an abundant transcript in endothelial cells and it has an important role in regulating endothelial cell cytoskeletal structure, migration, capillary-like network formation and vascular maturation. In addition, S1PR1 signaling is important in the regulation of lymphocyte maturation, migration and trafficking.
G protein-coupled receptor 32, also known as GPR32 or the RvD1 receptor, is a human receptor (biochemistry) belonging to the rhodopsin-like subfamily of G protein-coupled receptors.
Allograft inflammatory factor 1 (AIF-1) also known as ionized calcium-binding adapter molecule 1 (IBA1) is a protein that in humans is encoded by the AIF1 gene.
Macrophage receptor with collagenous structure (MARCO) is a protein that in humans is encoded by the MARCO gene. MARCO is a class A scavenger receptor that is found on particular subsets of macrophages. Scavenger receptors are pattern recognition receptors (PRRs) found most commonly on immune cells. Their defining feature is that they bind to polyanions and modified forms of a type of cholesterol called low-density lipoprotein (LDL). MARCO is able to bind and phagocytose these ligands and pathogen-associated molecular patterns (PAMPs), leading to the clearance of pathogens and cell signaling events that lead to inflammation. As part of the innate immune system, MARCO clears, or scavenges, pathogens, which leads to inflammatory responses. The scavenger receptor cysteine-rich (SRCR) domain at the end of the extracellular side of MARCO binds ligands to activate the subsequent immune responses. MARCO expression on macrophages has been associated with tumor development and also with Alzheimer's disease, via decreased responses of cells when ligands bind to MARCO.
SH2B adapter protein 3 (SH2B3), also known as lymphocyte adapter protein (LNK), is a protein that in humans is encoded by the SH2B3 gene on chromosome 12. SH2B3 is ubiquitously expressed in many tissues and cell types. LNK functions as a regulator in signaling pathways relating to hematopoiesis, inflammation, and cell migration. As a result, it is involved in blood diseases, autoimmune disorders, and vascular disease. The SH2B3 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.
Diabetic cardiomyopathy is a disorder of the heart muscle in people with diabetes. It can lead to inability of the heart to circulate blood through the body effectively, a state known as heart failure(HF), with accumulation of fluid in the lungs or legs. Most heart failure in people with diabetes results from coronary artery disease, and diabetic cardiomyopathy is only said to exist if there is no coronary artery disease to explain the heart muscle disorder.
Apoptosis inhibitor of macrophage (AIM) is a protein produced by macrophages that regulates immune responses and inflammation. It plays a crucial role in key intracellular processes like lipid metabolism and apoptosis.