Splachnaceae

Last updated

Splachnaceae
Temporal range: Middle Jurassic–Recent
Mosses01.jpg
Splachnum sphaericum
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Division: Bryophyta
Class: Bryopsida
Subclass: Bryidae
Superorder: Bryanae
Order: Splachnales
Family: Splachnaceae
Grev. & Arn.
Genera

Splachnaceae is a family of mosses, containing around 70 species in 6 genera. [1] Around half of those species are entomophilous, using insects to disperse their spores, a characteristic found in no other seedless land plants. [2]

Contents

Many species in this family are coprophilous, growing exclusively on animal faeces or carrion. [3] For this reason, certain genera such as Splachnum Hedw. are often referred to as dung mosses. [3]

Description

Gametophyte

Mosses in this family are predominantly dioicous (archegonia and antheridia on separate individuals); although exceptions are known such as S.pensylvanicum which is monoicous. The gametophyte is always [[acrocarpous (standing up), with green-yellow to reddish leaves/stems, and most often under 5 cm in height. Stems stand vertically and when cross-sectioned, can be seen to have a well-defined central strand. Large parenchymatous cells surround the central strand with thin, red to orange cell walls. Cortical cells are often more red in color, being narrow and thick-walled. Axillary hairs may be present along the stem, although axillary branches are infrequent. Rhizoids are dark brown or red and may be papillose. [4] [5] [1]

Female plants are more robust than male plants; having spreading, ovate to lanceolate leaves that are moderately crisped when dry. Leaf distribution may be homogenous or may become larger/denser near the apex of the stem. Leaves may be serrate (finely toothed) on the edges, and possess a single costa that often ends before the apex. Laminal cells are thin-walled, being more rectangular towards the base and hexagonal at the apex. Perichaetial leaves are often larger, but similar in structure to the other leaves on the stem. [5] [4]

Illustration of the sporophytic and gametophytic stages of Splachnum ampullaceum Splachnum ampullaceum -- Flora Batava -- Volume v14.jpg
Illustration of the sporophytic and gametophytic stages of Splachnum ampullaceum

Male plants are more slender, with a looser leaf distribution. Leaves differ in size and differentiation towards the apex of the stem forming an often-bulbous perigonia. Perigonial leaves are strongly differentiated, being ovate and tapering to a long tip. [4] The perigonium is terminal, and will often harbour paraphyses. [5] [4]

Early stages

Like other mosses, gametophytes start as a haploid spore which quickly germinates to become a uniseriate protonema. This protonema serves members of Splachnaceae by quickly colonizing its preferred substrate, developing in three stages: the chloronema, caulonema, and finally the leafy gametophore. [6]

Spores

Unicellular spores are produced through meiosis by the sporophyte. In Splachnaceae, they are often small and sticky for easy insect dispersal. Spores are sometimes dispersed in clusters. [5] [6]

Sporangium of Splachnum ampullaceum, showing the exaggerated hypophysis. Splachnum ampullaceum.jpg
Sporangium of Splachnum ampullaceum, showing the exaggerated hypophysis.
Chloronema

The chloronema is the earliest stage of protonema, having unique features such as irregular branching, round chloroplasts, and transverse crosswalls. There is no budding at this stage. [6]

Caulonema

The caulonema is the secondary stage of protonema. It is branched regularly, has spindle-shaped chloroplasts, and oblique crosswalls. At this stage, budding begins. [6]

Sporophyte

Many species in this family have very exaggerated sporophytes that are highly adapted for their specific ecological relationships. [4]

The seta of Splachnaceae is usually elongate and erect, with a defined central strand. The sporangium is highly variable in shape. In many species, the middle of the sporophyte (hypophysis/apophysis) may be highly inflated or flared in order to attract insects. Above this is a shorter "urn" which is the same colour, and harbours a bluntly conical or convex operculum on top; of which the annulus is poorly developed. A single peristome is present, with 16 variably pigmented teeth (exostome usually consists of 8 teeth). Stomata are often abundant on the sporangium. [1] [5] [4]

A haploid calyptra, composed of tissue from the gametophyte, may be present on the sporophyte; it being nearly always mitrate (shaped like a bishop's cap) and smooth. [7]

Taxonomy

Funaria hygrometrica, which may superficially resemble species in Splachnaceae. Funaria hygrometrica (e, 144437-481001) 2931.JPG
Funaria hygrometrica, which may superficially resemble species in Splachnaceae.

Splachnaceae currently resides in the order Splachnales (M. Fleisch.) Ochyra; which is further nestled within the class Bryopsida. It comprises 6 genera and approximately 73 species. [8] The type genus is Splachnum Hedw. [9]

Three subfamilies have been named within the Splachnaceae. [10]

Splachnoideae (Aplodon, Splachnum, Tetraplodon) can be distinguished by their highly differentiated and often inflated hypophysis. All species are coprophilous and entomophilous excluding T. paradoxus, which is only coprophilous. Genera are distinguished by their peristome teeth. [10]

Voitioideae (Voitia) is characterized by the absence of a differentiated line of dehiscence on the sporangium (cleistocarpy). Spore dispersal is only achieved following the decay of the sporangial wall. Species in this subfamily are coprophilous but not entomophilous. [10]

Taylorioideae (Moseniella, Tayloria) is the most polymorphic subfamily, with species that inhabit many different niches. [10]

Sporophytes of Meesia uliginosa, of which members of Splachnaceae are distantly related to. Meesia uliginosa (b, 124927-470644) 6143.JPG
Sporophytes of Meesia uliginosa, of which members of Splachnaceae are distantly related to.

List of genera

Members of Splachnaceae may superficially resemble those of Funariaceae, sharing soft textured and similarly shaped leaves. However, recent phylogenetic studies do not support this relationship and instead point to the Splachnaceae as being more closely related to the Meesiaceae rather than to the Funariaceae as was thought. [5] [2] Although members of both Splachnaceae and Meesiaceae grow in similar moist habitats such as peatlands, they differ in the structure of the sporangium; where Splachnaceae possess an erect sporangium with a mitrate calyptra and Meesiaceae possess a curved sporangium with a cucullate (hood shaped) calyptra. [2]

Kulindobryum from the Middle Jurassic Ukureyskaya Formation of Russia, associated with dinosaur skeletons of the genus Kulindadromeus, closely resembles Tayloria, and may be a member of the family. [11]

Distribution and habitat

Members of Splachnaceae are found throughout the world; although they are distributed predominantly in temperate and cold regions of the northern and southern hemispheres, as well as in high altitude regions of the neotropics. Some genera, such as Moseniella Broth., are restricted to tropical latitudes; although this is uncommon. There is an overwhelming preference for members of this family to inhabit bogs and fens. [3] [1]

Due to their ecological preference for decaying animal matter, members of Splachnaceae are considered annual-shuttles, and populations cannot be sustained over long periods of time. Furthermore, such habitats are extremely discontinuous as they depend on the production and decay of animal matter within a specific climatic and vegetational zone. For these reasons, Splachnaceae are mostly found in regions where the temperature is cold enough to slow the rapid decay of animal matter on which they inhabit. [5]

Although not all species are restricted to habitats associated with decaying animal matter, they have nonetheless been observed to flourish in nitrogen-rich substrates. [1]

Ecological relationships and life cycle

Life cycle of a bryophyte Moss life Cycle.jpg
Life cycle of a bryophyte

Entomophily

Splachnaceae is the only family of bryophytes in which entomophily has been observed. Entomophily is especially common within the genera Splachnum and Tayloria , as well as having been documented in the species Aplodon wormskioldii. Entomophilous species are in particular, noted for their brightly coloured and often scented sporophytes. These sporophyte attract insects, most notably flies of the family Scathophagidae, also known as dung flies. [12] Three types of adaptations have been recorded for entomophily: (1) coprophily, (2) morphological adaptations and (3) chemical adaptations. [13]

In many instances, the specific colours, shapes, and odours produced by sporophytes have been shown to have species-specific relationships to the flies that visit them. This suggests that the Splachnaceae co-exist through signal diversification, which allows different species to avoid competition for spore-dispersal within a limited range. This is akin to the signal diversification strategies observed in flowering plants, which reduce competition for pollinators. [14] [13] Competition between species is nonetheless strong, with reduced rates of growth having been observed under experimental conditions where two species are grown in close proximity. [12]

Morphological adaptations

Morphological adaptations of the family Splachnaceae include the enlarged, often inflated hypophysis, the coloured sporangium/upper region of the seta, and hygroscopic movements of the peristome which help spores to leave. As well, the small spore size and stickiness helps spores to be dispersed in clumps on the hairs of insects. [13]

Chemical adaptations

Chemical adaptations of the Splachnaceae include the odours produced and released by the sporophytes. In the sporophytes of entomophilous species, volatile compounds, including organic acids and octane derivatives, have been isolated. These are in especially high concentration within the hypophysis. Such chemoattractants are most often secreted through the stomata of the apophysis; and are absent throughout the seta as well as the gametophyte. [13]

Flies of the family Scathophagidae have been observed to benefit from an increase in copulatory success in relation to these compounds. [13]

Chemical adaptations for entomophily in the Splachnaceae can also be thought of as a type of chemical mimicry, with many scents being produced in order to mimic the faecal/carrion odours enjoyed by flies. The odours produced in the Splachnaceae have also been compared to those produced by plants in the angiosperm families Rafflesiaceae and Araceae, all of which are pollinated by flies. [13]

Coprophily

Almost all species within Splachnaceae are coprophilus to some extent, meaning that they grow on decaying animal matter. This includes the dung of herbivorous mammals, skeletal remains, antlers, the stomach pellets of predatory birds, and corpses. [13]

In past cultivation experiments, it was observed that the protonema and shoots of species such as Splachnum sphaericum have a greater tolerance for substrates of high nitrogen content than other arctic bryophytes. Additionally, results indicated that the tissues of species in Splachnaceae reflect the nutrient content of their chosen substrata; being much higher in nitrogen, phosphorus, and calcium compared to other bryophytes. For these species, there is selective advantage to growing on such nutrient concentrated substrates. [13]

Life cycle

Like all other bryophytes, species in the family Splachnaceae complete their life cycle in two generations, also known as the alternation of heteromorphic generations. For mosses, the dominant stage is the haploid gametophyte, which supports and nourishes the diploid sporophyte through an attachment known as the foot. [15]

The gametophyte stage starts with the production of a haploid spore, which must first be dispersed onto suitable habitat (often by wind or by insect in Splachnaceae). From here, the spore will germinate, and following a protonematal stage, develop into a leafy gametophyte. Following this, male and female organs called the antheridia and archegonia will produce sperm and eggs through mitosis. If fertilization is successful, a diploid zygote will form, eventually developing into a dependent sporophyte, which will produce the following generation of spores. [15]

Due to the often short-lived nature of their habitat, members of Splachnaceae do not usually engage in asexual reproduction. [12]

Botanical history

Plate depicting various species in the family Splachnaceae from its original publication. Splachnaceae plate from the original description.jpg
Plate depicting various species in the family Splachnaceae from its original publication.

Although the first records of these mosses in herbaria are uncertain, Splachnaceae was first published in 1824 (Memoirs of the Wernerian Natural History Society 5: 442. 1824.) by Robert Kaye Greville and George Arnott Walker. [7]

The type genus of Splachnaceae is Splachnum Hedw., of which the family was named after. It was first described in 1801 in Species Muscorum Frondosorum (51–56, pl. 8.), with the type specimen having been described in latin (Splachnum vasculosum Hedw.). [16]

Synonyms

Authors: Schimper, Wilhelm Philipp

Published In: Corollarium Bryologiae Europaeae 5. 1856. (Coroll. Bryol. Eur.) [17]

Evolutionary history

Entomophily is a notable adaptation that, as in flowering plants, has helped species in Splachnaceae to rapidly diversify within a short evolutionary timeframe. [3] According to recent phylogenetic studies, the morphological adaptations of many species within Splachnaceae have evolved following, rather than having triggered, transitions to a coprophilous and entomophilous habit; suggesting that visual and olfactory signaling of insects has evolved multiple times in the Splachnaceae. [2] [10]

Related Research Articles

<span class="mw-page-title-main">Spore</span> Unit of reproduction adapted for dispersal and survival in unfavorable conditions.

In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, fungi and protozoa.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<span class="mw-page-title-main">Moss</span> Division of non-vascular land plants

Mosses are small, non-vascular flowerless plants in the taxonomic division Bryophytasensu stricto. Bryophyta may also refer to the parent group bryophytes, which comprise liverworts, mosses, and hornworts. Mosses typically form dense green clumps or mats, often in damp or shady locations. The individual plants are usually composed of simple leaves that are generally only one cell thick, attached to a stem that may be branched or unbranched and has only a limited role in conducting water and nutrients. Although some species have conducting tissues, these are generally poorly developed and structurally different from similar tissue found in vascular plants. Mosses do not have seeds and after fertilisation develop sporophytes with unbranched stalks topped with single capsules containing spores. They are typically 0.2–10 cm (0.1–3.9 in) tall, though some species are much larger. Dawsonia, the tallest moss in the world, can grow to 50 cm (20 in) in height. There are approximately 12,000 species.

<span class="mw-page-title-main">Bryophyte</span> Terrestrial plants that lack vascular tissue

Bryophytes are a group of land plants, sometimes treated as a taxonomic division, that contains three groups of non-vascular land plants (embryophytes): the liverworts, hornworts and mosses. In the strict sense, Bryophyta consists of the mosses only. Bryophytes are characteristically limited in size and prefer moist habitats although they can survive in drier environments. The bryophytes consist of about 20,000 plant species. Bryophytes produce enclosed reproductive structures, but they do not produce flowers or seeds. They reproduce sexually by spores and asexually by fragmentation or the production of gemmae. Though bryophytes were considered a paraphyletic group in recent years, almost all of the most recent phylogenetic evidence supports the monophyly of this group, as originally classified by Wilhelm Schimper in 1879. The term bryophyte comes from Ancient Greek βρύον (brúon) 'tree moss, liverwort', and φυτόν (phutón) 'plant'.

<span class="mw-page-title-main">Embryophyte</span> Subclade of green plants, also known as land plants

The Embryophyta, or land plants, are the most familiar group of green plants that comprise vegetation on Earth. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of green algae as sister of the Zygnematophyceae. The Embryophyta consist of the bryophytes plus the polysporangiophytes. Living embryophytes therefore include hornworts, liverworts, mosses, lycophytes, ferns, gymnosperms and flowering plants. The land plants have diplobiontic life cycles and it is accepted now that they emerged from freshwater, multi-celled algae.

<span class="mw-page-title-main">Hornwort</span> Division of non-vascular land plants with horn-shaped sporophytes

Hornworts are a group of non-vascular Embryophytes constituting the division Anthocerotophyta. The common name refers to the elongated horn-like structure, which is the sporophyte. As in mosses and liverworts, hornworts have a gametophyte-dominant life cycle, in which cells of the plant carry only a single set of genetic information; the flattened, green plant body of a hornwort is the gametophyte stage of the plant.

<span class="mw-page-title-main">Non-vascular plant</span> Plant without a vascular system

Non-vascular plants are plants without a vascular system consisting of xylem and phloem. Instead, they may possess simpler tissues that have specialized functions for the internal transport of water.

Monoicy is a sexual system in haploid plants where both sperm and eggs are produced on the same gametophyte, in contrast with dioicy, where each gametophyte produces only sperm or eggs but never both. Both monoicous and dioicous gametophytes produce gametes in gametangia by mitosis rather than meiosis, so that sperm and eggs are genetically identical with their parent gametophyte.

<i>Buxbaumia</i> Genus of mosses

Buxbaumia is a genus of twelve species of moss (Bryophyta). It was first named in 1742 by Albrecht von Haller and later brought into modern botanical nomenclature in 1801 by Johann Hedwig to commemorate Johann Christian Buxbaum, a German physician and botanist who discovered the moss in 1712 at the mouth of the Volga River. The moss is microscopic for most of its existence, and plants are noticeable only after they begin to produce their reproductive structures. The asymmetrical spore capsule has a distinctive shape and structure, some features of which appear to be transitional from those in primitive mosses to most modern mosses.

<span class="mw-page-title-main">Funariidae</span> Subclass of mosses

The Funariidae are a widespread group of mosses in class Bryopsida. The majority of species belong to the genera Funaria and Physcomitrium.

<i>Tayloria</i> (plant) Genus of mosses

Tayloria is a genus of mosses in the family Splachnaceae. It comprises 45 species, divided among 6 subgenera:

<i>Splachnum sphaericum</i> Species of moss in the family Splachnaceae

Splachnum sphaericum, also known as pinkstink dung moss, is a species of moss. This species occurs in North America. It also occurs in upland Britain, where it is known as round-fruited collar-moss and in north temperate and boreal regions of Europe. Its habitat is bog and wet heathland where it grows on herbivore dung. This and other Splachnum species are entomophilous. The sporophytes, which are generally coloured red or black, produce an odour of carrion that is attractive to flies and the spores are dispersed by flies to fresh dung.

<i>Hypnodendron comosum</i> Species of moss

Hypnodendron comosum, commonly known as palm moss or palm tree moss, is a ground moss which can be divided into two varieties: Hypnodendron comosum var. comosum and Hypnodendron comosum var. sieberi. Both Hypnodendron varieties most commonly grow in damp locations in the temperate and tropical rainforests of New South Wales, Victoria, and Tasmania in southern Australia and in New Zealand.

<i>Pogonatum urnigerum</i> Species of moss

Pogonatum urnigerum is a species of moss in the family Polytrichaceae, commonly called urn haircap. The name comes from "urna" meaning "urn" and "gerere" meaning "to bear" which is believed to be a reference made towards the plant's wide-mouthed capsule. It can be found on gravelly banks or similar habitats and can be identified by the blue tinge to the overall green colour. The stem of this moss is wine red and it has rhizoids that keep the moss anchored to substrates. It is an acrocarpous moss that grows vertically with an archegonium borne at the top of each fertilized female gametophyte shoot which develops an erect sporophyte.

<i>Climacium dendroides</i> Species of moss

Climacium dendroides, also known as tree climacium moss, belongs in the order Hypnales and family Climaciaceae, in class Bryopsida and subclass Bryidae. It is identified as a "tree moss" due to its distinctive morphological features, and has four species identified across the Northern Hemisphere. The species name "dendroides" describes the tree-like morphology of the plant, and its genus name came from the structure of the perforations of peristome teeth. This plant was identified by Weber and Mohr in 1804. They often have stems that are around 2-10 cm tall and growing in the form of patches, looking like small palm-trees. They have yellow-green branches at the tip of stems. The leaves are around 2.5-3 mm long, with rounder stem leaves and pointier branch leaves. Their sporophytes are only abundant in late winter and early spring, and appears as a red-brown shoot with long stalk and cylindrical capsules.

<i>Splachnum</i> Genus of mosses

Splachnum, also known as dung moss or petticoat moss, is a genus of moss that is well known for its entomophily. It commonly grows on patches of dung or decomposing animal matter.

<i>Buxbaumia viridis</i> Species of moss

Buxbaumia viridis, also known as the green shield-moss, is a rare bryophyte found sporadically throughout the northern hemisphere. The gametophyte of this moss is not macroscopically visible; the large, distinct sporophyte of B. viridis is the only identifying structure of this moss. This moss can be found singularly or in small groups on decaying wood, mostly in humid, sub-alpine to alpine Picea abies, Abies alba, or mixed tree forests. This moss is rare and conservation efforts are being made in most countries B. viridis is found in.

<i>Andreaea rupestris</i> Species of moss

Andreaea rupestris is a species of moss in the class Andreaeopsida, are commonly referred to as the "lantern mosses" due to the appearance of their dehisced sporangia. It is typically found on smooth, acidic, exposed rock in the Northern hemisphere. It exhibits the common features of the genus Andreaea such as being acrocarpous, having dark pigmentation, lacking a seta, and bearing 4 lines of dehiscence in its mature sporangia, but can be further identified upon careful examination of its gametophytic leaves which have an ovate base to a more blunt apex compared to other similar species.

<i>Tortula muralis</i> Species of moss

Tortula muralis, commonly known as wall- screw moss, is a species of moss in the family Pottiaceae. T. muralis is found throughout the world.

<i>Splachnum rubrum</i> Species of moss in the family Splachnaceae

Splachnum rubrum, is a species of moss in the Splachnum genus which is found in the Northern Hemisphere. Like other species in the Splachnum genus, it is known for growing on animal waste and being entomophilous. Although very rare, its bright red-purple sporangia makes its sporophyte stage stand out well when seenin the wild.

References

  1. 1 2 3 4 5 Bernard Goffinet (2012). "Splachnaceae". In Patrick M. McCarthy (ed.). Australian Mosses Online (PDF). Australian Biological Resources Study.
  2. 1 2 3 4 Bernard Goffinet, A. Jonathan Shaw & Cymon J. Cox (2004). "Phylogenetic inferences in the dung-moss family Splachnaceae from analyses of cpDNA sequence data and implications for the evolution of entomophily". American Journal of Botany . 91 (5): 748–759. doi:10.3732/ajb.91.5.748. PMID   21653429.
  3. 1 2 3 4 Marino, Paul; Raguso, Robert; Goffinet, Bernard (2009-01-01). "The ecology and evolution of fly dispersed dung mosses (Family Splachnaceae): Manipulating insect behaviour through odour and visual cues". Symbiosis. 47 (2): 61–76. doi:10.1007/BF03182289. ISSN   1878-7665. S2CID   36557683.
  4. 1 2 3 4 5 6 "Splachnaceae in Flora of North America @ efloras.org". www.efloras.org. Retrieved 2020-04-08.
  5. 1 2 3 4 5 6 7 "California Moss eFlora key to Tayloria". ucjeps.berkeley.edu. Retrieved 2020-04-08.
  6. 1 2 3 4 Chopra, R. N. (2005). Biology of bryophytes. New Age International Ltd. ISBN   9788122413434. OCLC   66464066.
  7. 1 2 Wernerian Natural History Society.; Society, Wernerian Natural History (1824). Memoirs of the Wernerian Natural History Society. Vol. v.5 (1824). Edinburgh.: [The Society].
  8. Marino, Paul; Raguso, Robert; Goffinet, Bernard (2009-01-01). "The ecology and evolution of fly dispersed dung mosses (Family Splachnaceae): Manipulating insect behaviour through odour and visual cues". Symbiosis. 47 (2): 61–76. doi:10.1007/BF03182289. S2CID   36557683.
  9. Goffinet, Bernard (2014-03-04). "Classification of extant moss genera | Bernard Goffinet - Bryology (and Lichenology)" . Retrieved 2020-04-08.
  10. 1 2 3 4 5 Goffinet, Bernard; Shaw, A. Jonathan; Cox, Cymon J. (2004). "Phylogenetic inferences in the dung-moss family Splachnaceae from analyses of cpDNA sequence data and implications for the evolution of entomophily". American Journal of Botany. 91 (5): 748–759. doi:10.3732/ajb.91.5.748. PMID   21653429.
  11. Mamontov, Yuriy S.; Ignatov, Michael S. (2019). "How to rely on the unreliable: Examples from Mesozoic bryophytes of Transbaikalia". Journal of Systematics and Evolution. 57 (4): 339–360. doi: 10.1111/jse.12483 . ISSN   1759-6831.
  12. 1 2 3 "Bryophyte Ecology Volume 2 ebook | Bryophyte Ecology | Michigan Technological University". digitalcommons.mtu.edu. Retrieved 2020-04-09.
  13. 1 2 3 4 5 6 7 8 Koponen, Aune (1990-09-01). "Entomophily in the Splachnaceae". Botanical Journal of the Linnean Society. 104 (1–3): 115–127. doi:10.1111/j.1095-8339.1990.tb02214.x. ISSN   0024-4074.
  14. Ackerly, D. (2009-10-20). "Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal". Proceedings of the National Academy of Sciences. 106 (Supplement_2): 19699–19706. doi: 10.1073/pnas.0901635106 . ISSN   0027-8424. PMC   2780941 . PMID   19843698.
  15. 1 2 Haig, David (2016-10-19). "Living together and living apart: the sexual lives of bryophytes". Philosophical Transactions of the Royal Society B: Biological Sciences. 371 (1706): 20150535. doi:10.1098/rstb.2015.0535. ISSN   0962-8436. PMC   5031620 . PMID   27619699.
  16. Hedwig, Johannes; Schwägrichen, Christian Friedrich (1801). Species muscorum frondosorum : descriptae et tabulis aeneis lxxvii coloratis illustratae. Vol. 1801. Lipsiae (Leipzig): sumtu J. A. Barthii.
  17. Schimper, Wilhelm-Philippe, 1808-1880. (1836–1855). Bryologia europaea; seu, Genera muscorum europaeorum, monographice illustrata auctoribus Ph. Bruch, W. Ph. Schimper & Th. Gümbel. Sumptibus librariae E. Schweizerbart. OCLC   173655873.{{cite book}}: CS1 maint: multiple names: authors list (link)