Sporocadaceae

Last updated

Sporocadaceae
Neopestalotiopsis rhapidis (10.3897-BDJ.9.e70446) Figure 1.jpg
Images of Neopestalotiopsis rhapidis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Amphisphaeriales
Family: Sporocadaceae
Corda, 1842 [1]
Type genus
Sporocadus
Corda, 1839
Genera

see text

Synonyms
  • BartaliniaceaeWijayaw. Maharachch. & K.D. Hyde, Fungal Diversity 73: 85. 2015
  • BartaliniaceaeWijayaw. Maharachch. & K.D. Hyde, Fungal Diversity 86: 5. 2017.
  • DiscosiaceaeMaharachch. & K.D. Hyde, Fungal Diversity 73: 94. 2015.
  • PestalotiopsidaceaeMaharachch. & K.D. Hyde, Fungal Diversity 73: 106. 2015.
  • RobillardaceaeCrous, IMA Fungus 6: 184. 2015

The Sporocadaceae are a family of fungi, that was formerly in the order Xylariales. [2] It was placed in the Amphisphaeriales order in 2020. [3]

Contents

Species of Sporocadaceae are endophytic (living with a plant), plant pathogenic (causing disease) or saprobic (processing of decayed (dead or waste) organic matter). [4] They are associated with a wide range of host plants. [5] [6] [7] They are also endophytes or parasitic on humans and animals. [8] Some of them are confirmed to cause human and animal diseases. For example, Pestalotiopsis spp. have been isolated from a bronchial biopsy, corneal abrasions, eyes, feet, fingernails, scalp, and sinuses from the human body. [9] [10]

Members of Sporocadaceae are also known as 'pestalotioid fungi', [11] which refers to genera resembling those taxa having affinities with Pestalotia. [12] A former genus, whose species are now split between Pestalotiopsis, Neopestalotiopsis and Pseudopestalotiopsis. [13] [14] 'Pestalotia' also encompasses genus Seiridium. [15]

History

The family Sporocadaceae was established by Corda in 1842 with the type genus of Sporocadus. [5] [8]

The order of Amphisphaeriales was resurrected by Senanayake et al. (2015), to include Amphisphaeriaceae, Clypeosphaeriaceae and another four novel families derived from Amphisphaeriaceae (Bartaliniaceae, Discosiaceae, Pestalotiopsidaceae and Phlogicylindriaceae). [16] However, the fungal sequence dataset as used in Senanayake et al. (2015), [16] was largely incomplete and some of the introduced families were not well supported statistically. Subsequently, Jaklitsch et al. (2016), [17] synonymised Bartaliniaceae, Discosiaceae, Pestalotiopsidaceae and Robillardaceae, and then revived the older family name of Sporocadaceae to accommodate them (Crous et al. 2015). [18]

Because genera in this family of fungi share the same evolutionary history, it is unlikely that the diversity of secondary metabolites detected in Pestalotiopsis is an exception within the family. Therefore, a large number of potential novel metabolites might be hidden and await discovery. The natural classification system proposed for Sporocadaceae in this study could thus present a major step to screen for novel metabolites in future studies. [5]

Description

Most fungal genera within the Sporocadaceae family have multi-septate (cavity walls) and more or less fusiform (spindle-like shaped) conidia with appendages at one or both ends, frequently with some melanised cells. [12] This genus has undergone many rearrangements since it was first introduced by Italian botanist, lichenologist and mycologist De Notaris (1805–1877), in 1841. [5]

The morphology of the asexual morph genera having acervular (an open, saucer-shaped asexual fruiting body) conidiomata that produce hyaline (resembling glass), pale or dark brown, septate conidia were taken into the consideration by various botanic authors when they were assigned to the family. [8]

Pestalotia-like asexual morphs were classified in Amphisphaeriaceae (Samuels et al. 1987), [19] accommodating 36 genera (Hawksworth et al. 1995). [20]

Hosts

They are associated with a wide range of host plants, [6] [11] including grapevines in China, [5] Rosa spp. [11] Camellia oleifera (Tea-oil tree) in China, [13]

Many of the Sporocadaceae species were reported as important plant pathogenic fungi that mainly harm various economic crops, such as tea ( Camellia sinensis ), [21] [22] blueberry ( Vaccinium corymbosum ), [23] and elephant apple, ( Dillenia indica ). [24] Genera Pestalotiopsis and Neopestalotiopsis cause twig blight and dieback on blueberry plants in Portugal. [25] Genera Neopestalotiopsis, Pestalotiopsis, and Seiridium are found on woody oil plants such as; (Camellia oleifera, Olea europaea (Olive), Paeonia suffruticosa , Sapium sebiferum , and Vernicia fordii ) in Sichuan Province, China. [15]

Species of Pestalotiopsis are found on Fagaceae leaves within China. [26] Species Pestalotiopsis kenyana causes leaf spot disease on Zanthoxylum schinifolium (a species of prickly ash) in Sichuan Province, China. [27]

Pestalotioid fungi are also one of the major agents causing leaf spots on mango trees in China. [28]

In 2021, new species were found in Thailand, Neopestalotiopsis hydeana and Pestalotiopsis hydei which caused leaf spots and fruit rots on Alpinia malaccensis , Alpinia galangal , Annona squamosa , Artocarpus heterophyllus , Garcinia mangostana , Litsea petiolata , Vitis vinifera and various Citrus sp. in Chiang Rai, Thailand. [29]

Uses

In addition, members of Sporocadaceae are of particular interest with regard to the production of secondary metabolites, e.g. Pestalotiopsis, Bartalinia and Morinia (Collado et al., 2006, [30] Gangadevi and Muthumary, 2008, [31] Liu et al., 2009). [32] Pestalotiopsis fici was shown to possess a very high number of gene clusters involved in bio-active compound synthesis (Wang et al. 2016). [33]

Distribution

It has a cosmopolitan distribution worldwide, [11] except Canada, Alaska, Greenland and the North and South poles. [34] Including Argentina, [23] Thailand, [6] Taiwan, [21] and China. [7] [12] [11]

Genera

Studies on Sporocadaceae were mostly based on ITS and LSU sequence data (DNA analysis) and these data sets were not originally informative in resolving generic boundaries within the family (Jaklitsch et al. 2016b). [17] The 2019 study by Liu et al. (2019a), provided a revision of this family complete with morphology and multi-gene phylogeny based on the LSU, ITS and rpb2 sequence data and further analysis using protein coding genes (tef1 or tub2) for each genus. [5]

The family comprised 35 genera in 2022. [12] It was estimated it had 750 species. [8] As accepted in 2020 (with amount of genera); [3]

Related Research Articles

Pseudopestalotiopsis theae is a plant pathogen affecting tea.

The fungal genus Truncatella in the family Sporocadaceae, and in the Amphisphaeriales order, includes plant pathogens such as Truncatella laurocerasi.

<span class="mw-page-title-main">Pleosporales</span> Order of fungi

The Pleosporales is the largest order in the fungal class Dothideomycetes. By a 2008 estimate, it contained 23 families, 332 genera and more than 4700 species. The majority of species are saprobes on decaying plant material in fresh water, marine, or terrestrial environments, but several species are also associated with living plants as parasites, epiphytes or endophytes. The best studied species cause plant diseases on important agricultural crops e.g. Cochliobolus heterostrophus, causing southern corn leaf blight on maize, Phaeosphaeria nodorum causing glume blotch on wheat and Leptosphaeria maculans causing a stem canker on cabbage crops (Brassica). Some species of Pleosporales occur on animal dung, and a small number occur as lichens and rock-inhabiting fungi.

Broomella is a genus of fungi in the family Sporocadaceae.

<i>Lepteutypa</i> Genus of fungi

Lepteutypa is a genus of plant pathogens in the family Amphisphaeriaceae. First described by the Austrian mycologist Franz Petrak in 1923, the genus contains 10 species according to a 2008 estimate. It was increased to 15 in 2020.

The Trichosphaeriales are an order of sac fungi. It is monotypic, and consists of the single family, the Trichosphaeriaceae. In 2017, the family of Trichosphaeriaceae was placed in Diaporthomycetidae families incertae sedis, which was accepted by Wijayawardene et al. (2018), and Wijayawardene et al. 2020. The order of Trichosphaeriales was also unplaced. They are generally saprobic and pathogenic on plants, commonly isolated from herbivore dung.

<i>Pestalotiopsis</i> Genus of fungi

Pestalotiopsis is a genus of ascomycete fungi in the Sporocadaceae family.

<i>Seiridium</i> Genus of fungi

Seiridium is a genus of plant pathogens in the family Sporocadaceae.

<i>Monochaetia</i> Genus of fungi

Monochaetia is a genus of fungi in the family Sporocadaceae. Species in the genus are typically plant parasites and saprobes, and cause leaf spot diseases on various hosts.

Seimatosporium is a fungus genus within the family Sporocadaceae.

<span class="mw-page-title-main">Glomerellales</span> Order of fungi

Glomerellales is an order of ascomycetous fungi within the subclass Hypocreomycetidae (Sordariomycetes). The order includes saprobes, endophytes and pathogens on plants, animals and other fungi with representatives found all over the world in varying habitats.

<span class="mw-page-title-main">Pyriculariaceae</span> Family of fungi

The Pyriculariaceae are a family of ascomycete fungi in the order Magnaporthales. It was introduced by S. Klaubauf, M.H. Lebrun & P.W. Crous in 2014.

<span class="mw-page-title-main">Amphisphaeriales</span> Order of fungi

The Amphisphaeriales are an order of fungi within the class Sordariomycetes and subclass Xylariomycetidae.

<i>Sporocadus</i> Genus of fungi

Sporocadus is a genus of plant pathogens in the family Sporocadaceae.

<i>Discosia</i> Genus of fungi

Discosia is a genus of plant pathogens in the family Sporocadaceae.

Heterotruncatella is a genus of plant pathogens in the family Sporocadaceae.

<i>Neopestalotiopsis</i> Genus of fungi

Neopestalotiopsis is a genus of plant pathogens in the family Sporocadaceae.

Pseudopestalotiopsis is a genus of plant pathogens in the family Sporocadaceae.

Sarcostroma is a genus of fungi in the family Sporocadaceae. Most species of this genus are saprobes, endophytes or pathogens on leaves.

<span class="mw-page-title-main">Coniothyriaceae</span> Family of fungi

Coniothyriaceae is a family of ascomycetous marine based fungi within the order of Pleosporales in the subclass Pleosporomycetidae and within the class Dothideomycetes. They are pathogenic or they can be saprobic on dead branches. They are generally a anamorphic species.

References

  1. Corda, A.C.J. 1842. Icones fungorum hucusque cognitorum. 5:1-92
  2. Lumbsch, Thorsten H.; Huhndorf, S.M. (December 2007). "Outline of Ascomycota – 2007". Myconet. Chicago, USA: The Field Museum, Department of Botany. 13: 1–58. Archived from the original on March 18, 2009.
  3. 1 2 Wijayawardene, Nalin; Hyde, Kevin; Al-Ani, Laith Khalil Tawfeeq; Somayeh, Dolatabadi; Stadler, Marc; Haelewaters, Danny; et al. (2020). "Outline of Fungi and fungus-like taxa". Mycosphere. 11: 1060–1456. doi: 10.5943/mycosphere/11/1/8 . hdl: 11336/151990 .
  4. Hyde, Kevin D.; et al. (2016). "Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa" (PDF). Fungal Diversity. 80 (1): 1–270. doi:10.1007/s13225-016-0373-x. S2CID   256072208.
  5. 1 2 3 4 5 6 Liu, F.; Bonthond, G.; Groenewald, J.Z.; Cai, L.; Crous, P.W. (March 2019). "Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia". Studies in Mycology. 92: 287–415. doi:10.1016/j.simyco.2018.11.001. PMC   6298422 . PMID   30584265.
  6. 1 2 3 Maharachchikumbura, S.S.N.; Guo, L.D.; Chukeatirote, E; McKenzie, E.H.C.; Hyde, Kevin D. (2013). "A destructive new disease of Syzygium samarangense in Thailand caused by the new species Pestalotiopsis samarangensis". Tropical Plant Pathology. 38 (3): 227–235. doi: 10.1590/S1982-56762013005000002 . S2CID   84240181.
  7. 1 2 Jayawardena, R.S.; Zhang, W.; Liu, M.; Maharachchikumbura, SSN; Zhou, Y.; Huang, J.B.; Nilthong, S.; Wang, Z.Y.; Li, X.H.; Yan, J.Y.; Hyde, Kevin D. (2015). "Identification and characterization of Pestalotiopsis-like fungi related to grapevine diseases in China". Fungal Biology. 119 (5): 348–361. doi:10.1016/j.funbio.2014.11.001. PMID   25937063.
  8. 1 2 3 4 Chethana, Thilini (18 April 2020). "Sporocadaceae - Facesoffungi number: FoF 06111". Faces Of Fungi. Retrieved 22 March 2023.
  9. Sutton, D.A. (1999). "Coelomycetous fungi in human disease. A review: Clinical entities, pathogenesis, identification and therapy". Rev. Iberoam. Micol. 16 (4): 171–179. PMID   18473543.
  10. Monden, Y.; Yamamoto, S.; Sunada, A.; Asari, S.; Makimura, K.; Inoue, Y. (2013). "First case of fungal keratitis caused by Pestalotiopsis clavispora". Clin. Ophthalmol. 7: 2261–2264. doi: 10.2147/OPTH.S48732 . PMC   3848927 . PMID   24348013.
  11. 1 2 3 4 5 Peng, C.; Crous, P.W.; Jiang, N.; Fan, X.L.; Liang, Y.M.; Tian, C.M. (December 2022). "Diversity of Sporocadaceae (pestalotioid fungi) from Rosa in China". Persoonia - Molecular Phylogeny and Evolution of Fungi. Naturalis Biodiversity Center. 49: 201–260. doi: 10.3767/persoonia.2022.49.07 . S2CID   254662172.
  12. 1 2 3 4 Zhang, Zhaoxue; Liu, Rongyu; Liu, Shubin; Mu, Taichang; Zhang, Xiuguo; Xia, Jiwen (14 April 2022). "Morphological and phylogenetic analyses reveal two new species of Sporocadaceae from Hainan, China". MycoKeys. 88: 171–192. doi: 10.3897/mycokeys.88.82229 . PMC   9023435 . PMID   35585932. S2CID   248198766.
  13. 1 2 Li, Lingling; Yang, Qin; Li, He (15 December 2021). "Morphology, Phylogeny, and Pathogenicity of Pestalotioid Species on Camellia oleifera in China". J Fungi (Basel). 7 (12): 1080. doi: 10.3390/jof7121080 . PMC   8705482 . PMID   34947061.
  14. Vinson, Edgar. "Pestalotia is an Emerging Disease of Strawberries in the Southeast". Alabama Cooperative Extension System. Retrieved 22 March 2023.
  15. 1 2 Li, Wen-Li; Dissanayake, Asha J.; Zhang, Tian; Maharachchikumbura, Sajeewa S.N.; Liu, Jian-Kui (8 November 2022). "Identification and Pathogenicity of Pestalotiod Fungi Associated with Woody Oil Plants in Sichuan Province, China". J Fungi (Basel). 8 (11): 1175. doi: 10.3390/jof8111175 . PMC   9696782 . PMID   36354942.
  16. 1 2 Senanayake, Indunil C.; Maharachchikumbura, Sajeewa S.N.; Hyde, Kevin D.; Bhat, Jayarama D.; Jones, E. B. Gareth; McKenzie, Eric H. C.; Dai, Dong Qin; Daranagama, Dinushani A.; Dayarathne, Monika C.; Goonasekara, Ishani D.; Konta, Sirinapa; Li, Wen Jing; Shang, Qiu Ju; Stadler, Marc; Wijayawardene, Nalin N.; Xiao, Yuan Pin; Norphanphoun, Chada; Li, Qirui; Liu, Xing Zhong; Bahkali, Ali H.; Kang, Ji Chuan; Wang, Yong; Wen, Ting Chi; Wendt, Lucile; Xu, Jian Chu; Camporesi, Erio (2015). "Towards unraveling relationships in Xylariomycetidae (Sordariomycetes)". Fungal Diversity. 73: 73–144. doi:10.1007/s13225-015-0340-y. S2CID   256070746.
  17. 1 2 Jaklitsch, W.M.; Gardiennet, A.; Voglmayr, H. (2016). "Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria". Persoonia - Molecular Phylogeny and Evolution of Fungi. 37: 82‑105. doi:10.3767/003158516X690475. PMC   5238940 . PMID   28100927.
  18. Crous, Pedro W.; Carris, Lori M.; Giraldo, Alejandra; Groenewald, Johannes Z.; Hawksworth, David L.; Hemández-Restrepo, Margarita; Jaklitsch, Walter M.; Lebrun, Marc-Henri; Schumacher, René K.; Stielow, J. Benjamin; Linde, Elna J. van der; Vilcāne, Jūlija; Voglmayr, Hermann; Wood, Alan R. (2015). "The Genera of Fungi - fixing the application of the type species of generic names - G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia". IMA Fungus. 6 (1): 163–198. doi:10.5598/imafungus.2015.06.01.11. PMC   4500082 . PMID   26203422.
  19. Samuels, G.J.; Müller, E.; Petrini, O. (1987). "Studies in the Amphisphaeriaceae (sensu lato) 3. New species of Monographella and Pestalosphaeria and two new genera". Mycotaxon. 28: 473–499.
  20. D.L. Hawksworth, P.M. Kirk, B.C. Sutton, et al. Ainsworth & Bisby's Dictionary of the Fungi (8th edn.), CAB International, Wallingford, UK (1995)
  21. 1 2 Tsai, Ichen; Chung, Chia-Lin; Lin, Shiou-Ruei; Hung, Ting-Hsuan; Shen, Tang-Long; Hu, Chih-Yi; Hozzein, Wael N.; Ariyawansa, Hiran A. (February 2021). "Cryptic Diversity, Molecular Systematics, and Pathogenicity of Genus Pestalotiopsis and Allied Genera Causing Gray Blight Disease of Tea in Taiwan, With a Description of a New Pseudopestalotiopsis Species". Plant Disease. 105 (2): 425–443. doi: 10.1094/PDIS-05-20-1134-RE . PMID   32720884. S2CID   220841364.
  22. J. N. Srivastava and A. K. Singh (Editors) Diseases of Horticultural Crops: Diagnosis and Management: Volume 4 ... (2022) , p. 127, at Google Books
  23. 1 2 Fernández et al. 'Disease Prevalence and Symptoms Caused by Alternaria tenuissima and Pestalotiopsis guepinii on Blueberry in Entre Ríos and Buenos Aires, Argentina' January 2015, American Journal of Plant Sciences 06 (19):3082-3090
  24. Banerjee, A.; Mandal, R.; Nath, P.S. (2018). "First report of leaf spot disease of elephant apple (Dillenia indica) caused by Pestalotiopsis sp. in India". New Disease Reports. 37: 14. doi: 10.5197/j.2044-0588.2018.037.014 .
  25. Santos, João; Hilário, Sandra; Pinto, Glória; Alves, Artur (2022). "Diversity and pathogenicity of pestalotioid fungi associated with blueberry plants in Portugal, with description of three novel species of Neopestalotiopsis". European Journal of Plant Pathology. 162 (3): 539–555. doi:10.1007/s10658-021-02419-0. S2CID   244503020.
  26. Jiang, Ning; Voglmayr, Hermann; Xue, Han; Piao, Chun-Gen; Li, Yong (21 December 2022). "Morphology and Phylogeny of Pestalotiopsis (Sporocadaceae, Amphisphaeriales) from Fagaceae Leaves in China". Microbiol. Spectr. 10 (6): e0327222. doi:10.1128/spectrum.03272-22. PMC   9769744 . PMID   36354327.
  27. Liu, C.; Luo, F; Zhu, T.; Han, S.; Li, S. (24 May 2021). "Leaf Spot Disease Caused by Pestalotiopsis kenyana on Zanthoxylum schinifolium in Sichuan Province, China". Plant Dis. 105 (11): 3747. doi: 10.1094/PDIS-10-20-2247-PDN . PMID   34029133. S2CID   235202722.
  28. Shu, Juan; Yu, Zhihe; Sun, Wenxiu; Zhao, Jiang; Li, Qili; Tang, Lihua; Guo, Tangxun; Huang, Suiping; Mo, Jianyou; Hsiang, Tom; Luo, Shuming (April 2020). "Identification and Characterization of Pestalotioid Fungi Causing Leaf Spots on Mango in Southern China". Plant Disease. 104 (4): 1207–1213. doi: 10.1094/PDIS-03-19-0438-RE . PMID   32065570. S2CID   209581223.
  29. Huanaluek, Naruemon; Jayawardena, Ruvishika S.; Maharachchikumbura, Sajeewa S. N.; Harishchandra, Dulanjalee L. (7 January 2021). "Additions to pestalotioid fungi in Thailand: Neopestalotiopsis hydeana sp. nov. and Pestalotiopsis hydei sp. nov". Phytotaxa. 479 (1): 23–43. doi:10.11646/phytotaxa.479.1.2. S2CID   234258635.
  30. Collado, J.; Platas, G.; Bills, G.F.; Basilio, A.; Vicente, F. (2006). "Studies on Morinia: Recognition of Morinia longiappendiculata sp. nov. as a new endophytic fungus, and a new circumscription of Morinia pestalozzioides". Mycologia. 98 (4): 616–627. doi:10.1080/15572536.2006.11832665. PMID   17139855. S2CID   218587511.
  31. Gangadevi, V.; Muthumary, J. (2008). "Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb". World Journal of Microbiology and Biotechnology. 24 (5): 717. doi:10.1007/s11274-007-9530-4. S2CID   84478329.
  32. Liu, L.; Li, Y.; Liu, S.; Zheng, Z.; Chen, X.; Zhang, H. (2009). "Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici". Organic Letters. 11 (13): 2836–2839. doi:10.1021/ol901039m. PMID   19496604.
  33. Wang, X.; Zhang, X.; Liu, L.; Xiang, M.; Wang, W.; Sun, X.; Che, Y.; Guo, L.; Liu, G.; Guo, L.; Wang, C.; Yin, W.B.; Stadler, M.; Zhang, X.; Liu, X. (2015). "Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products". BMC Genomics. 16 (1): 28. doi: 10.1186/s12864-014-1190-9 . PMC   4320822 . PMID   25623211.
  34. "Sporocadaceae". www.gbif.org. Retrieved 18 February 2023.
  35. Bonthond, G.; Sandoval-Denis, M.; Groenewald, J.Z.; Crous, P.W. (2018). "Seiridium (Sporocadaceae): an important genus of plant pathogenic fungi". Persoonia. 40: 96–118. doi:10.3767/persoonia.2018.40.04. PMC   6146642 . PMID   30504997.