Tagish Lake | |
---|---|
Type | Chondrite |
Class | Carbonaceous chondrite |
Group | C2 ungrouped |
Shock stage | S1 |
Country | Canada |
Region | The Yukon |
Coordinates | 59°42′16″N134°12′5″W / 59.70444°N 134.20139°W [1] |
Observed fall | Yes |
Fall date | January 18, 2000 08:43:42 pst |
TKW | >10 kilograms (22 lb) |
Tagish Lake in northwestern British Columbia, the site of the "Tagish Lake" meteorite fall |
The Tagish Lake meteorite fell at 16:43 UTC on 18 January 2000 in the Tagish Lake area in northwestern British Columbia, Canada.
Fragments of the Tagish Lake [1] meteorite landed upon the Earth on January 18, 2000, at 16:43 UT (08:43 local time in Yukon) after a large meteoroid exploded in the upper atmosphere at altitudes of 50–30 kilometres (31–19 mi) with an estimated total energy release of about 1.7 kilotons of TNT. Following the reported sighting of a fireball in southern Yukon and northern British Columbia, Canada, more than 500 fragments of the meteorite were collected from the lake's frozen surface. Post-event atmospheric photographs of the trail left by the associated fireball and U.S. Department of Defense satellite information yielded the meteor trajectory. [2] Most of the stony, carbonaceous fragments landed on the Taku Arm of the lake, coming to rest on the lake's frozen surface. The passage of the fireball and the high-altitude explosion set off a wide array of satellite sensors as well as seismographs.
The local inhabitants described the smell in the air following the airburst as sulfurous and many first thought the blast was caused by a missile. [3]
The Tagish Lake meteoroid is estimated to have been 4 meters in diameter and 56 tonnes in weight before it entered the Earth's atmosphere. However, it is estimated that only 1.3 tonnes remained after ablation in the upper atmosphere and several fragmentation events, meaning that around 97% of the meteorite had vaporised, mainly becoming stratospheric dust that was seen as noctilucent clouds to the northwest of Edmonton at sunset, some 12 hours after the event. Of the 1.3 tonnes of fragmented rock, somewhat over 10 kilograms (22 lb) (about 1%) was found and collected.
Tagish Lake is classified as a carbonaceous chondrite, type C2 ungrouped. The pieces of the Tagish Lake meteorite are dark grey to almost black in color with small light-colored inclusions, and a maximum size of ~2.3 kg. [2] Except for a greyish fusion crust, the meteorites have the visual appearance of a charcoal briquette. [4] The fragments were transported in their frozen state to research facilities after they were collected by a local resident in late January, 2000. Initial studies of these fresh fragments were done in collaboration with researchers from NASA. Snowfall covered the remaining fragments until April 2000, when a search effort was mounted by researchers from the University of Calgary and University of Western Ontario. These later fragments were mostly found to have sunk into the ice by a few cm to more than 20 cm, and had to be collected out of meltwater holes, or cut in icy blocks from the frozen surface of Tagish Lake.
Fragments of the fresh, "pristine" Tagish Lake meteorite totaling more than 850 g are currently held in the collections at the Royal Ontario Museum and the University of Alberta. "Degraded" fragments from the April–May 2000 search are curated mainly at the University of Calgary and the University of Western Ontario.
Analyses have shown that Tagish Lake fragments are of a primitive type, containing unchanged stellar dust granules that may have been part of the cloud of material that created the Solar System and Sun. This meteorite shows some similarities to the two most primitive carbonaceous chondrite types, the CI and CM chondrites; it is nevertheless quite distinct from either of them. Tagish Lake has a much lower density than any other type of chondrite and is actually composed of two somewhat different rock types. The major difference between the two lithologies is in the abundance of carbonate minerals; one is poor in carbonates and the other is rich in them. [5]
The meteorite contains an abundance of organic materials, including amino acids. [6] The organics in the meteorite may have originally formed in the interstellar medium and/or the solar protoplanetary disk, but were subsequently modified in the meteorites' asteroidal parent bodies. [7]
A portion of the carbon in the Tagish Lake meteorite is contained in what are called nanodiamonds—very tiny diamond grains at most only a few micrometers in size. In fact, Tagish Lake contains more of the nanodiamonds than any other meteorite. [8]
As with many carbonaceous chondrites, [9] and Type 2 specimens in particular, Tagish Lake contains water. The meteorite contains water-bearing serpentinite and saponite phyllosilicates; [10] [11] gypsum has been found, but may be weathering of meteoritic sulfides. The water is not Earthly contamination but isotopically different from terrestrial water. [12] [13]
The age of the meteorite is estimated to be about 4.55 billion years thus being a remainder of the period when the solar system was formed.
Based on eyewitness accounts of the fireball caused by the incoming meteor and on the calibrated photographs of the track which it had left behind and which was visible for about half an hour, scientists have managed to calculate the orbit it followed before it impacted with Earth. Although none of the photographs captured the fireball directly, the fireball path was reconstructed from two calibrated photos taken minutes after the event, giving the entry angle. Eyewitness accounts in the vicinity of Whitehorse, Yukon accurately constrained the ground track azimuth from either side. It was found that the Tagish Lake meteorite had a pre-entry Apollo type orbit that brought it from the outer reaches of the asteroid belt. Currently,[ when? ] there are only eleven meteorite falls with accurately determined pre-entry orbits, based on photographs or video recordings of the fireballs themselves taken from two or more different angles.
Further study of the reflectance spectrum of the meteorite indicate that it most likely originated from 773 Irmintraud, a D-type asteroid.
The double, and not the expected single, plume formation of debris, as seen in video and photographs of the 2013 Chelyabinsk meteor dust trail and believed by Peter Brown to have coincided near the primary airburst location, was also pictured following the Tagish Lake fireball, [14] and according to Brown, likely indicates where rising air quickly flowed into the center of the trail, essentially in the same manner as a moving 3D version of a mushroom cloud. [15]
A meteorite is a rock that originated in outer space and has fallen to the surface of a planet or moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical interactions with the atmospheric gases cause it to heat up and radiate energy. It then becomes a meteor and forms a fireball, also known as a shooting star; astronomers call the brightest examples "bolides". Once it settles on the larger body's surface, the meteor becomes a meteorite. Meteorites vary greatly in size. For geologists, a bolide is a meteorite large enough to create an impact crater.
A chondrite is a stony (non-metallic) meteorite that has not been modified, by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primitive asteroids. Some such bodies that are captured in the planet's gravity well become the most common type of meteorite by arriving on a trajectory toward the planet's surface. Estimates for their contribution to the total meteorite population vary between 85.7% and 86.2%.
P-type asteroids are asteroids that have low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their interior. P-type asteroids are found in the outer asteroid belt and beyond. There are about 33 known P-type asteroids, depending on the classification, including 46 Hestia, 65 Cybele, 76 Freia, 87 Sylvia, 153 Hilda, 476 Hedwig and, in some classifications, 107 Camilla.
A micrometeorite is a micrometeoroid that has survived entry through the Earth's atmosphere. Usually found on Earth's surface, micrometeorites differ from meteorites in that they are smaller in size, more abundant, and different in composition. The IAU officially defines meteoroids as 30 micrometers to 1 meter; micrometeorites are the small end of the range (~submillimeter). They are a subset of cosmic dust, which also includes the smaller interplanetary dust particles (IDPs).
329 Svea is an asteroid from the asteroid belt and the namesake of the small Svea family, approximately 81 kilometers in diameter. The C-type asteroid and is probably composed of carbonaceous material.
Carbonaceous chondrites or C chondrites are a class of chondritic meteorites comprising at least 8 known groups and many ungrouped meteorites. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%) of meteorite falls.
The ordinary chondrites are a class of stony chondritic meteorites. They are by far the most numerous group, comprising 87% of all finds. Hence, they have been dubbed "ordinary". The ordinary chondrites are thought to have originated from three parent asteroids, with the fragments making up the H chondrite, L chondrite and LL chondrite groups respectively.
Petrus Matheus Marie (Peter) Jenniskens is a Dutch-American astronomer and a senior research scientist at the Carl Sagan Center of the SETI Institute and at NASA Ames Research Center. He is an expert on meteor showers, and wrote the book Meteor Showers and their Parent Comets, published in 2006 and Atlas of Earth’s Meteor Showers, published in 2023. He is past president of Commission 22 of the International Astronomical Union (2012–2015) and was chair of the Working Group on Meteor Shower Nomenclature (2006–2012) after it was first established. Asteroid 42981 Jenniskens is named in his honor.
101955 Bennu (provisional designation 1999 RQ36) is a carbonaceous asteroid in the Apollo group discovered by the LINEAR Project on 11 September 1999. It is a potentially hazardous object that is listed on the Sentry Risk Table and has the highest cumulative rating on the Palermo Technical Impact Hazard Scale. It has a cumulative 1-in-1,750 chance of impacting Earth between 2178 and 2290 with the greatest risk being on 24 September 2182. It is named after Bennu, the ancient Egyptian mythological bird associated with the Sun, creation, and rebirth.
A meteor air burst is a type of air burst in which a meteoroid explodes after entering a planetary body's atmosphere. This fate leads them to be called fireballs or bolides, with the brightest air bursts known as superbolides. Such meteoroids were originally asteroids and comets of a few to several tens of meters in diameter. This separates them from the much smaller and far more common "shooting stars", that usually burn up quickly upon atmospheric entry.
CI chondrites, also called C1 chondrites or Ivuna-type carbonaceous chondrites, are a group of rare carbonaceous chondrite, a type of stony meteorite. They are named after the Ivuna meteorite, the type specimen. CI chondrites have been recovered in France, Canada, India, and Tanzania. Their overall chemical composition closely resembles the elemental composition of the Sun, more so than any other type of meteorite.
The Sutter's Mill meteorite is a carbonaceous chondrite which entered the Earth's atmosphere and broke up at about 07:51 Pacific Time on April 22, 2012, with fragments landing in the United States. The name comes from Sutter's Mill, a California Gold Rush site, near which some pieces were recovered. Meteor astronomer Peter Jenniskens assigned Sutter's Mill (SM) numbers to each meteorite, with the documented find location preserving information about where a given meteorite was located in the impacting meteoroid. As of May 2014, 79 fragments had been publicly documented with a find location. The largest (SM53) weighs 205 grams (7.2 oz), and the second largest (SM50) weighs 42 grams (1.5 oz).
The Itqiy meteorite is an enstatite-rich stony-iron meteorite. It is classified as an enstatite chondrite of the EH group that was nearly melted and is therefore very unusual for that group. Other classifications have been proposed and are an ongoing scientific debate.
This is a glossary of terms used in meteoritics, the science of meteorites.
The Chelyabinsk meteor was a superbolide that entered Earth's atmosphere over the southern Ural region in Russia on 15 February 2013 at about 09:20 YEKT. It was caused by an approximately 18 m (59 ft) diameter, 9,100-tonne (10,000-short-ton) near-Earth asteroid that entered the atmosphere at a shallow 18.3 ± 0.4 degree angle with a speed relative to Earth of 19.16 ± 0.15 kilometres per second. The light from the meteor was briefly brighter than the Sun, visible as far as 100 km (60 mi) away. It was observed in a wide area of the region and in neighbouring republics. Some eyewitnesses also reported feeling intense heat from the fireball.
The Chelyabinsk meteorite is the fragmented remains of the large Chelyabinsk meteor of 15 February 2013 which reached the ground after the meteor's passage through the atmosphere. The descent of the meteor, visible as a brilliant superbolide in the morning sky, caused a series of shock waves that shattered windows, damaged approximately 7,200 buildings and left 1,491 people injured. The resulting fragments were scattered over a wide area.
The Ordovician meteor event was a dramatic increase in the rate at which L chondrite meteorites fell to Earth during the Middle Ordovician period, about 467.5±0.28 million years ago. This is indicated by abundant fossil L chondrite meteorites in a quarry in Sweden and enhanced concentrations of ordinary chondritic chromite grains in sedimentary rocks from this time.
Mason Gully is an ordinary chondrite of subclass H5, and is the second meteorite to be recovered using the Desert Fireball Network (DFN) camera observatory. One stone weighing 24.5g was observed to fall by the Desert Fireball Network observatory in Western Australia on 13 April 2010 at 10h36m10s UTC. It was recovered by the DFN on 3 November 2010 by Dr. R. Merle and the Fireball network recovery team, and was found 150m from its predicted fall location based upon the observed trajectory and calculated mass.
Asteroidal water is water or water precursor deposits such as hydroxide (OH−) that exist in asteroids. The "snow line" of the Solar System lies outside of the main asteroid belt, and the majority of water is expected in minor planets. Nevertheless, a significant amount of water is also found inside the snow line, including in near-earth objects (NEOs).
CM chondrites are a group of chondritic meteorites which resemble their type specimen, the Mighei meteorite. The CM is the most commonly recovered group of the 'carbonaceous chondrite' class of meteorites, though all are rarer in collections than ordinary chondrites.