Unified Model

Last updated

The Unified Model is a numerical weather prediction and climate modeling software suite originally developed by the United Kingdom Met Office, [1] [2] and now both used and further developed by many weather-forecasting agencies around the world. [3] The Unified Model gets its name because a single model is used across a range of both timescales (nowcasting to centennial) and spatial scales (convective scale to climate system earth modelling). [4] The models are grid-point based, rather than wave based, and are run on a variety of supercomputers around the world. The Unified Model atmosphere can be coupled to a number of ocean models. [5] At the Met Office it is used for the main suite of Global Model, North Atlantic and Europe model (NAE) and a high-resolution UK model (UKV), in addition to a variety of Crisis Area Models and other models that can be run on demand. Similar Unified Model suites with global and regional domains are used by many other national or military weather agencies around the world for operational forecasting.

Contents

Data for numerical weather prediction is provided by observations from satellites, from the ground (both human and from automatic weather stations), from buoys at sea, radar, radiosonde weather balloons, wind profilers, commercial aircraft and a background field from previous model runs. The computer model is only adjusted towards the observations using assimilation, rather than forcing the model to accept an observed value that might make the system unstable (and could be an inaccurate observation). [6] The Unified Model software suite is written in Fortran (originally 77 but now predominantly 90) [7] and uses height as the vertical variable. [8] Because most developments of interest are near to the ground the vertical layers are closer together near the surface. [9]

Principal UM suites at the Met Office

The Met Office runs a range of Numerical Weather Prediction suites using the UM. [10]

All of the models use varying resolutions of topography with greater accuracy at higher resolutions. The limiting factor with all models is that for a weather event to be recorded by the model it must be at least three grid points in size. Thus for the global model at 40 km, a weather system must be at least 120 km to be modelled. This means smaller phenomena such as small depressions, smaller hurricanes and large thunderstorms are too small for the model to catch them. As the resolution increases smaller events can be caught, the 1.5 km model for example, is reputedly capable of modelling individual showers.

Global Model

Approximately 16 km resolution with 70 vertical levels. [11] Covers the entire globe and 168 hours in the future twice a day, the shortest outlook of the synoptic scale models currently in use (most others run out at least 10 days; furthermore, the Unified Model forecasts are only available out 72 hours for non-paying users). The Global model provides boundary information for the now retired North Atlantic European (NAE) model, for which additional shorter runs (48 hours) are produced twice a day. The model is kept close to the real atmosphere using hybrid 4D-Var data assimilation [12] of observations.

North Atlantic and European model - Retired

The Met Office's North Atlantic and European model (NAE) model had 70 levels with a 12 km resolution. [11] It is run out to 48 hours from start. Because the UK is at a northern latitude the computer transposes the model area to an equatorial location so the grid points give an area that is more square. This reduces the load on the model, allowing it to run more quickly. The model is kept close to the real atmosphere using 4D-Var data assimilation of observations.

Euro 4km model

70 Vertical levels, 4.4 km horizontal resolution. Run out to 120 hours. [11] Now being superseded by the UKV in many applications.

UKV model

70 Vertical levels, 1.5 km horizontal resolution. Run out to 36 hours (this replaced the UK 4 km model in 2011). The forecast is run every 3 hours using boundary conditions from the 25-km global model. [13] The resolution is 1.5 km over the UK, and 4 km over surrounding areas. [14] [15] The UKV model is kept close to observations using 3D-Var data assimilation every 3 hours.

CAM

The Crisis Area Model is a 12 km model that can be run for any area of the world should the need arise. This can include military use (the MMU use this on deployed operations) or environmental catastrophes.

Mountain Wave Models

This high resolution model provides information on mountain waves for a variety of locations around the UK and other areas of interest to the Met Office.

Met Office's Global Wave Model

This models sea waves around the world.

UM suites outside the Met Office

Unified Model suites which are similar to those from the Met Office are run by the Australian Bureau of Meteorology, the Australian Commonwealth Scientific and Industrial Research Organisation, the South African Weather Service, the Norwegian Meteorological Institute, the New Zealand National Institute of Water and Atmospheric Research, the [South] Korea Meteorological Administration and the National Centre for Medium Range Weather Forecasting, a subordinate office of the Indian Ministry of Earth Sciences.

Australian Bureau of Meteorology

The Australian Bureau of Meteorology, have an operational 12 km resolution global forecasting system utilizing the Unified Model. This global system provides boundary conditions for a number of higher resolution regional systems also using the Unified Model.

[South] Korea Meteorological Administration

The [South] Korea Meteorological Administration have an operational 10 km resolution global forecasting system utilizing the Unified Model. This global system provides boundary conditions for a 1.5 km resolution local Unified Model NWP system covering the Korean Peninsula Region.

UKCA

United Kingdom Chemistry & Aerosols (UKCA) is a sub-model of the UM that deals with trace gas and aerosol chemistry within the model. [16] This includes calculating the concentrations of climatically relevant gases such as methane and ozone, as well as the composition and evolution of aerosols. As with most of the UM, the UKCA was written in a collaboration between the UK Met Office and UK Academia.

JULES

Joint UK Land Environment System is a land surface model that has been developed in a collaboration between the Met Office and other research institutes. [17] JULES models the exchange of heat and moisture between the Unified Model atmosphere and the land surface and vegetation. JULES can also be used offline to estimate the impacts of different climate models on the land surface and hydrology.

Related Research Articles

<span class="mw-page-title-main">European Centre for Medium-Range Weather Forecasts</span> European intergovernmental weather computation organisation based in the UK

The European Centre for Medium-Range Weather Forecasts (ECMWF) is an independent intergovernmental organisation supported by most of the nations of Europe. It is based at three sites: Shinfield Park, Reading, United Kingdom; Bologna, Italy; and Bonn, Germany. It operates one of the largest supercomputer complexes in Europe and the world's largest archive of numerical weather prediction data.

<span class="mw-page-title-main">Weather forecasting</span> Science and technology application

Weather forecasting is the application of science and technology to predict the conditions of the atmosphere for a given location and time. People have attempted to predict the weather informally for millennia and formally since the 19th century. Weather forecasts are made by collecting quantitative data about the current state of the atmosphere, land, and ocean and using meteorology to project how the atmosphere will change at a given place.

<span class="mw-page-title-main">Met Office</span> United Kingdoms national weather service

The Meteorological Office, abbreviated as the Met Office, is the United Kingdom's national weather service. It is an executive agency and trading fund of the Department for Business, Energy and Industrial Strategy and is led by CEO Penelope Endersby, who took on the role as Chief Executive in December 2018 and is the first woman to do so. The Met Office makes meteorological predictions across all timescales from weather forecasts to climate change.

<span class="mw-page-title-main">Weather Prediction Center</span> United States weather agency

The Weather Prediction Center (WPC), located in College Park, Maryland, is one of nine service centers under the umbrella of the National Centers for Environmental Prediction (NCEP), a part of the National Weather Service (NWS), which in turn is part of the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Government. Until March 5, 2013 the Weather Prediction Center was known as the Hydrometeorological Prediction Center (HPC). The Weather Prediction Center serves as a center for quantitative precipitation forecasting, medium range forecasting, and the interpretation of numerical weather prediction computer models.

HIRLAM, the High Resolution Limited Area Model, is a Numerical Weather Prediction (NWP) forecast system developed by the international HIRLAM programme.

<span class="mw-page-title-main">Numerical weather prediction</span> Weather prediction using mathematical models of the atmosphere and oceans

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.

Data assimilation is a mathematical discipline that seeks to optimally combine theory with observations. There may be a number of different goals sought – for example, to determine the optimal state estimate of a system, to determine initial conditions for a numerical forecast model, to interpolate sparse observation data using knowledge of the system being observed, to set numerical parameters based on training a model from observed data. Depending on the goal, different solution methods may be used. Data assimilation is distinguished from other forms of machine learning, image analysis, and statistical methods in that it utilizes a dynamical model of the system being analyzed.

<span class="mw-page-title-main">Global Forecast System</span>

The Global Forecast System (GFS) is a global numerical weather prediction system containing a global computer model and variational analysis run by the United States' National Weather Service (NWS).

<span class="mw-page-title-main">Tropical cyclone forecast model</span> Computer program that uses meteorological data to forecast tropical cyclones

A tropical cyclone forecast model is a computer program that uses meteorological data to forecast aspects of the future state of tropical cyclones. There are three types of models: statistical, dynamical, or combined statistical-dynamic. Dynamical models utilize powerful supercomputers with sophisticated mathematical modeling software and meteorological data to calculate future weather conditions. Statistical models forecast the evolution of a tropical cyclone in a simpler manner, by extrapolating from historical datasets, and thus can be run quickly on platforms such as personal computers. Statistical-dynamical models use aspects of both types of forecasting. Four primary types of forecasts exist for tropical cyclones: track, intensity, storm surge, and rainfall. Dynamical models were not developed until the 1970s and the 1980s, with earlier efforts focused on the storm surge problem.

<span class="mw-page-title-main">Danish Meteorological Institute</span>

The Danish Meteorological Institute is the official Danish meteorological institute, administrated by the Ministry of Energy, Utilities and Climate. The institute makes weather forecasts and observations for Denmark, Greenland, and the Faroe Islands.

<span class="mw-page-title-main">Atmospheric model</span>

An atmospheric model is a mathematical model constructed around the full set of primitive dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes, heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion. They can predict microscale phenomena such as tornadoes and boundary layer eddies, sub-microscale turbulent flow over buildings, as well as synoptic and global flows. The horizontal domain of a model is either global, covering the entire Earth, or regional (limited-area), covering only part of the Earth. The different types of models run are thermotropic, barotropic, hydrostatic, and nonhydrostatic. Some of the model types make assumptions about the atmosphere which lengthens the time steps used and increases computational speed.

<span class="mw-page-title-main">Weather Research and Forecasting Model</span>

The Weather Research and Forecasting (WRF) Model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. NWP refers to the simulation and prediction of the atmosphere with a computer model, and WRF is a set of software for this. WRF features two dynamical (computational) cores, a data assimilation system, and a software architecture allowing for parallel computation and system extensibility. The model serves a wide range of meteorological applications across scales ranging from meters to thousands of kilometers.

TAMDAR is a weather monitoring system that consists of an in situ atmospheric sensor mounted on commercial aircraft for data gathering. It collects information similar to that collected by radiosondes carried aloft by weather balloons. It was developed by AirDat LLC, which was acquired by Panasonic Avionics Corporation in April 2013 and was operated until October 2018 under the name Panasonic Weather Solutions. It is now owned by FLYHT Aerospace Solutions Ltd.

A wind power forecast corresponds to an estimate of the expected production of one or more wind turbines in the near future, up to a year. Forecast are usually expressed in terms of the available power of the wind farm, occasionally in units of energy, indicating the power production potential over a time interval.

<span class="mw-page-title-main">Norwegian Meteorological Institute</span> National meteorological service of Norway

The Norwegian Meteorological Institute, also known internationally as MET Norway, is Norway's national meteorological institute. It provides weather forecasts for civilian and military uses and conducts research in meteorology, oceanography and climatology. It is headquartered in Oslo and has offices and stations in other cities and places. It has around 500 full-time staff and was founded in 1866.

The Global Environmental Multiscale Model (GEM), often known as the CMC model in North America, is an integrated forecasting and data assimilation system developed in the Recherche en Prévision Numérique (RPN), Meteorological Research Branch (MRB), and the Canadian Meteorological Centre (CMC). Along with the NWS's Global Forecast System (GFS), which runs out to 16 days, the ECMWF's Integrated Forecast System (IFS), which runs out 10 days, the Naval Research Laboratory Navy Global Environmental Model (NAVGEM), which runs out eight days, and the UK Met Office's Unified Model, which runs out to six days, it is one of the five predominant synoptic scale medium-range models in general use.

The Integrated Forecasting System (IFS) is a global numerical weather prediction system jointly developed and maintained by the European Centre for Medium-Range Weather Forecasts (ECMWF) based in Reading, England, and Météo-France based in Toulouse. The version of the IFS run at ECMWF is often referred to as the "ECMWF" or the "European model" in North America, to distinguish it from the American GFS.

<span class="mw-page-title-main">History of numerical weather prediction</span> Aspect of meteorological history

The history of numerical weather prediction considers how current weather conditions as input into mathematical models of the atmosphere and oceans to predict the weather and future sea state has changed over the years. Though first attempted manually in the 1920s, it was not until the advent of the computer and computer simulation that computation time was reduced to less than the forecast period itself. ENIAC was used to create the first forecasts via computer in 1950, and over the years more powerful computers have been used to increase the size of initial datasets as well as include more complicated versions of the equations of motion. The development of global forecasting models led to the first climate models. The development of limited area (regional) models facilitated advances in forecasting the tracks of tropical cyclone as well as air quality in the 1970s and 1980s.

The Simple Ocean Data Assimilation (SODA) analysis is an oceanic reanalysis data set consisting of gridded state variables for the global ocean, as well as several derived fields. SODA was developed in the 1990s as a collaborative project between the Department of Atmospheric and Oceanic Science at the University of Maryland and the Department of Oceanography at Texas A&M University with the goal of providing an improved estimate of ocean state from those based solely on observations or numerical simulations. Since its first release there have been several updates, the most recent of which extends from 1958-2008, as well as a “beta release” of a long-term reanalysis for 1871-2008.

The Navy Global Environmental Model (NAVGEM) is a global numerical weather prediction computer simulation run by the United States Navy's Fleet Numerical Meteorology and Oceanography Center. This mathematical model is run four times a day and produces weather forecasts. Along with the NWS's Global Forecast System, which runs out to 16 days, the ECMWF's Integrated Forecast System (IFS) and the CMC's Global Environmental Multiscale Model (GEM), both of which run out 10 days, and the UK Met Office's Unified Model, which runs out to 7 days, it is one of five synoptic scale medium-range models in general use.

References

  1. Use of the Unified model for weather forecasting at the Met Office The Met Office 2011. Retrieved 10 November 2011.
  2. Use of the Unified model for climate modeling at the Met Office The Met Office 2011. Retrieved 10 November 2011.
  3. The Unified Model Collaboration. The Met Office 2010. Retrieved 22 April 2010.
  4. The Unified Model. The Met Office 2011. Retrieved 10 November 2011.
  5. Met Office ocean models The Met Office 2011. Retrieved 10 November 2011.
  6. Met Office data assimilation and ensembles. Retrieved 28 December 2009.
  7. "Fortran 90". The Met Office. 2008. Archived from the original on 2003-04-30. Retrieved 2008-08-30.
  8. "New Dynamics". The Met Office. 2008. Archived from the original on 2010-06-18. Retrieved 2008-09-03.
  9. "2008 Operational Numerical Weather Prediction suites". The Met Office. 2008. Retrieved 2008-08-30.
  10. Met Office Unified Model. Met Office 2009. Retrieved 28 December 2009.
  11. 1 2 3 Atmospheric numerical model configurations as of early 2010. Met Office 2010.
  12. Hybrid variational/ensemble data assimilation Archived 2012-03-16 at the Wayback Machine . Met Office 2011.
  13. The UKV Model, Met Office, January 2012
  14. Issues with high-resolution NWP, discussing the UKV model, Met Office 2010.
  15. Experiences with a 1.5km version of the Met Office Unified Model for short range forecasting, discussing the UKV model, Met Office 2011.
  16. United Kingdom Chemistry and Aerosol model developed in a collaboration including the Met Office. Accessed 10 November 2011
  17. JULES collaboration. The Met Office 2011. Accessed 10 November 2011